
J. Parallel Distrib. Comput. 69 (2009) 613–622

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Deleting files in the Celeste peer-to-peer storage system
Gal Badishi a,∗, Germano Caronni b, Idit Keidar a, Raphael Rom a,b, Glenn Scott b
a Department of Electrical Engineering, The Technion – Israel Institute of Technology, Israel
b Sun Microsystems Laboratories, United States

a r t i c l e i n f o

Article history:
Received 8 February 2007
Received in revised form
16 October 2008
Accepted 13 March 2009
Available online 28 March 2009

Keywords:
Peer-to-peer
Storage
Fault-tolerance

a b s t r a c t

Celeste is a robust peer-to-peer object store built on top of a distributed hash table (DHT). Celeste is a
working system, developed by Sun Microsystems Laboratories. During the development of Celeste, we
faced the challenge of complete object deletion, and moreover, of deleting ‘‘files’’ composed of several
different objects. This important problem is not solved by merely deleting meta-data, as there are
scenarios in which all file contents must be deleted, e.g., due to a court order. Complete file deletion
in a realistic peer-to-peer storage system has not been previously dealt with due to the intricacy of
the problem — the system may experience high churn rates, nodes may crash or have intermittent
connectivity, and the overlay network may become partitioned at times. We present an algorithm that
eventually deletes all file contents, data and meta-data, in the aforementioned complex scenarios. The
algorithm is fully functional and has been successfully integrated into Celeste.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Two different technologies have been developed in recent
years: network storage systems and peer-to-peer networking.
Network storage, exemplified by a variety of NAS and SAN
products, is a result of the realization that stored data is sufficiently
valuable that reliable and continuous access to it is mandatory.
Peer-to-peer systems have evolved to create large distributed
systems from small and unreliable components, overcoming the
cost of providing extremely reliable units. It was only a matter of
time before these technologiesmerge to create peer-to-peer based
storage systems. Examples of such systems, each emphasizing a
different aspect of data storage, are Farsite [1], OceanStore [4],
Venti [8], Freenet [3], and Ivy [5].
Each of these systems contains an overlay network, typically

constructed on top of a distributed hash table (DHT), providing
routing and object location services to a storage management
system. Most of these storage systems consider aspects of data
replication, reliability, security, and storage maintenance, but
almost none of them addresses data deletion directly. It is
noteworthy that Plaxton et al. [7], in their seminal paper, do
address data deletion at the DHT level. However, their system
is static, rendering deletion a much easier problem than in a
dynamic system as considered herein. Additionally, their system
does not address more complex (and perhaps higher level) issues

∗ Corresponding address: Department of Electrical Engineering, Technion – Israel
Institute of Technology, Haifa 32000, Israel.
E-mail address: badishi@ee.technion.ac.il (G. Badishi).

of security, trust, and access control, whichwe consider important.
We provide some ideas on how to secure the deletion process in
real systems in Section 6.
One can identify three tiers of data deletion. The first tier is

access based deletion, in which data is not actually removed but
access to it is made harder. File systems typically delete pointers
to the data (sometimes bymodifying the file’s meta-data). Another
approach is to use data encryption in which case data deletion
amounts to destroying the relevant keys [6]. This is the easiest of all
tiers and relies on the inability to ever access datawithout pointers
to it or decrypt data without knowing the relevant keys. In some
cases, access based deletion may be insufficient, such as due to
court orders. Company lawyers, such as Sun Microsystems’, often
demand that a storage system will have the ability to completely
delete the contents of a file, so as to complywith the judge’s ruling.
The second tier of deletion is data obliteration, in which data

itself, not just the access means to it, are completely removed
from the system. It is a better approach to data deletion as it is
independent of future technological advances. This tier does not
necessarily replace the first tier, but rather augments it with much
stronger deletion guarantees.
The third tier is data annihilation, in which all traces of the

data are removed from all media on which it is stored. This tier is
extremely costly to implement and is typically reserved to national
security related data. In this paper, we deal with data obliteration,
i.e., the second tier.
Robustly obliterating a file in a survivable peer-to-peer storage

system is a real challenge. The main difficulty lies in the mere
fact that the storage system is designed to be survivable and
to provide availability even when nodes crash and links fail. To

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.03.003

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:badishi@ee.technion.ac.il
http://dx.doi.org/10.1016/j.jpdc.2009.03.003


614 G. Badishi et al. / J. Parallel Distrib. Comput. 69 (2009) 613–622

allow that, the system usually cuts a file into multiple objects,
replicates all of them, and stores their copies on different nodes.
To enable complete deletion, all of these chunks must be located
and deleted. What is worse is that the storage system might try to
maintain aminimumnumber of copies available, so as to guarantee
availability. This stands in contrast to what the deletion algorithm
wishes to do. Additionally, nodes may join or leave the system
at arbitrary times, in an orderly fashion, or simply by crashing or
becoming part of a distinct network partition. The objects these
nodes hold might re-enter the system at unknown times in the
future. By this time, the node at which the deletion request was
initiated may be unavailable. The system should always know
whether an object that has entered the system should in fact be
deleted. Finally, secure deletion means that only authorized nodes
should be allowed to delete a specific file.
We present a deletion (in the sense of data obliteration)

algorithm designed to operate on top of typical DHTs. The
algorithm was implemented in Celeste [2], which is a large scale,
distributed, secure, mutable peer-to-peer storage system that does
not assume continuous connectivity among its elements. Celeste
was designed and implemented at Sun Microsystems Labs. Our
deletion algorithm is founded on a separate authorization and
authentication mechanism to allow deletion of stored objects. It is
based on secure deletion tokens, one per object, that are necessary
and sufficient to delete an object.
In Section 2, we describe the system in which our deletion

algorithm operates, namely, a storage system, (Celeste in our case),
running atop a DHT, as well as the cryptographic authorization and
authentication mechanisms used. Section 3 presents our deletion
algorithm. This section describes the algorithm abstractly, without
linking it to a particular implementation.
In Section 4, we formally prove sufficient conditions for the

algorithm’s success. Roughly speaking, we prove that in a stable
network partition P that includes at least one copy of each of
the meta-data objects describing a file F , if any node in P tries
to delete F (at any point in time), then the algorithm guarantees
complete deletion of the contents of all data andmeta-data objects
associated with F in P . Moreover, when such a partition P merges
with another partition P ′, our algorithm ensures complete deletion
of all data objects associated with F in P ∪ P ′.
In Section 5, we validate the effectiveness of the algorithm

through simulations in typical settings. First, we present static
simulations showing that in a stable partition, complete deletion
is achieved promptly. These simulations validate the correctness
proof of Section 4, and demonstrate the deletion time in stable
situations, where eventual complete deletion is ensured. More-
over, the algorithm is scalable: as the underlying communication
is based on a DHT overlay, deletion time increases like the rout-
ing time over a DHT — logarithmically with the number of nodes.
We further show that the deletion time increases linearly with the
number of versions the file has, but decreases with the number of
replicas, since each node holding a copy of a meta-data object of a
file participates in the deletion process. At the same time, a larger
number of replicas increases the message load on the system. Sec-
ondly,we simulate the algorithm in dynamic settings,where nodes
constantly crash and recover. These simulations enact scenarios
that are not covered by the correctness proof of Section 4, which
only considers eventually stable settings. Nevertheless, in these
simulations, complete file deletion is always successful. Moreover,
the time it takes for a file to be completely obliterated from the
system is proportional to the time it takes failed nodes holding the
file’s objects to recover.
Finally, Section 6 addresses some implementation issues that

arise when implementing our algorithm in a real system, namely
Celeste. Section 7 concludes.

2. System architecture

Wemodel our peer-to-peer systemas a dynamic, intermittently
connected, overlay network of nodes that may join or leave the
system in an orderly fashion and can also crash unexpectedly.
Additionally, the overlay network may become partitioned due to
link failures. Crashed nodes may come back to life, retaining their
previous state. In this paperwedonot dealwith nodes that transfer
state information from other nodes. Such a state transfer will only
facilitate the deletion process, and thus our results provide a lower
bound on the algorithm’s robustness.
Our system is composed of two layers, similar to OceanStore

[4,10]. The lower layer is a DHT that is used for locating, storing
and retrieving objects. Any DHT can be used, as long as it provides
the interface and semantics described below. Exemplar DHTs are
Tapestry [13], Pastry [11], Chord [12], and CAN [9]. Above the
DHT layer resides the Celeste layer [2]. Celeste provides a secure,
survivable, mutable object store utilizing the DHT.

The Celeste layer. Each object in the DHT has a global universal
identifier (GUID), e.g., a 256-bit number. A Celeste object is
comprised of two parts, the data and the meta-data. The meta-
data contains information about the object, and is used both by
the DHT and by Celeste. (Note that Celeste’s meta-data is different
from the filesystem’s notion of a file meta-data, which is typically
stored in a separate Celeste object.) The integrity of objects in the
DHT can be verified, and nodes do not store objects that fail an
integrity check. With respect to verifiability, an object belongs to
one of two categories: (1) A self-verifiable object is an object whose
GUID is a hash of a mixture of its data section and its meta-data
section. (2) A signed object is an object whose GUID is arbitrary, but
its meta-data contains a digital signature (issued by the object’s
creator/modifier) that allows verification of the object’s integrity
(see Section 6). It is important to note that no two objects have the
same GUID. Not even self-verifiable objects with an identical data
section (their meta-data section is different).
General information about the file is saved as an object of a

special type, called an AObject. Among others it includes the GUID
of the latest version. Thus the GUID of the AObject (AGUID) is a
lead to all the versions of the file. Each file update generates a
new version containing information on that update. Each version is
described by a special object called a VObject, whose GUID is called
a VGUID. The AObject contains the VGUID of the latest version
of the file, and each VObject contains the VGUID of the previous
version of the file. Since the AObject is mutable but maintains the
same GUID, it is a signed object. In contrast, VObjects are self-
verifiable. We note here that having versions is very similar to
having different files represent different updates to the same core
file. In that respect, versioning is just a property of our system, and
can be replaced by other means for file updates.
For simpler storage and management, the file’s data contents

are divided into blocks. Each block is stored as a separate self-
verifiable object called a BObject, whose GUID is called a BGUID.
Each VObject contains a list of all the BGUIDs that hold the data
for that version of the file. The relations among these entities are
depicted in Fig. 1. Note that all Celeste objects are replicated in the
DHT.

The DHT layer. The DHT layer provides the Celeste layer with
primitives of object storage and retrieval. The DHT recognizes
nodes and stored objects. Every object is assigned a root which is
uniquely chosen among the live nodes in the system. The root is
determined based on the object’s GUID. (Nodes and objects have
GUIDs drawn from the same space.) For example, the object’s root
can be the live node with the lowest GUID that is not lower than
the object’s GUID (if no such node exists, then the root is the node
with the lowest GUID).
The root of an object is ultimately responsible to track the

whereabouts of copies of the object. To that end the root of an



Download English Version:

https://daneshyari.com/en/article/432098

Download Persian Version:

https://daneshyari.com/article/432098

Daneshyari.com

https://daneshyari.com/en/article/432098
https://daneshyari.com/article/432098
https://daneshyari.com

