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SUMMARY

Exploration permits acquisition of the most relevant
information during learning. However, the specific in-
formation needed, the influences of this information
on decision making, and the relevant neural mecha-
nisms remain poorly understood. We modeled
distinct information types available during contextual
association learning and used model-based fMRI in
conjunction with manipulation of exploratory deci-
sion making to identify neural activity associated
with information-based decisions. We identified hip-
pocampal-prefrontal contributions to advantageous
decisions based on immediately available novel
information, distinct from striatal contributions to
advantageous decisions based on the sum total
available (accumulated) information. Furthermore,
network-level interactions among these regions dur-
ing exploratory decision making were related to
learning success. These findings link strategic explo-
ration decisions during learning to quantifiable infor-
mation and advance understanding of adaptive
behavior by identifying the distinct and interactive
nature of brain-network contributions to decisions
based on distinct information types.

INTRODUCTION

Exploration behaviors during learning critically determine the

information that is available and can be used to strategically

acquire specific information needed to fill gaps in our memory/

knowledge (Metcalfe and Jacobs, 2010). Exploration can thus

determine what is learned, and learned information can, in

turn, determine what will be explored. However crucial these

mutual exploration-learning interactions are for memory suc-

cess, little is known regarding their dynamics or neural mecha-

nisms in humans.

Nonhuman animals can explore adaptively to improve

learning. For instance, rodents sporadically exhibit iterative

viewing of options at decision points during maze learning.

This exploration pattern predicts learning success and effective

generalization when the maze is subsequently altered (Tolman,

1948) and has been associated with hippocampal function

(Buckner, 2010; Johnson and Redish, 2007). We have identified

hippocampal-centered brain networks in humans associated

with exploration behaviors that enhance learning, relative to

receipt of the same stimuli but without active exploration (Voss

et al., 2011a, 2011b). It is interesting that a specific exploration

pattern that enhanced learning and hippocampal-prefrontal

engagement was the revisiting of recently seen objects (Voss

et al., 2011b), similar to the strategic exploration pattern

observed in rodent maze learning. These findings implicate hip-

pocampus and prefrontal cortex in online control of exploration

(Buckner, 2010; Eichenbaum and Fortin, 2009; Wang et al.,

2014), which could extend current functional accounts of these

structures in advantageous decisions based on long-term mem-

ory (Buckner and Carroll, 2007; Schacter et al., 2012). In parallel

research, dopamine-modulated pathways centered on the basal

ganglia have been associated with strategic exploration during

reinforcement learning and reward seeking (Hills, 2006; Pennartz

et al., 2009), which could interact with hippocampus to support

joint memory-reward influences on exploration (Shohamy and

Adcock, 2010). However, further specification of the unique

and interactive roles of hippocampus, prefrontal cortex, and

basal ganglia in exploration will require measurement of the in-

formation that must be learned, so that the exploration decisions

made to acquire this information can be isolated.

Indeed, it is an exceptional challenge to quantify the informa-

tion on which individuals base exploration decisions during

learning. Although it is possible to measure visual information

for many stimuli (Beard and Ahumada, 1998), including entropy

information relevant to novelty (Strange et al., 2005), this infor-

mation does not necessarily drive exploration decisions. For

instance, episodic learning is critically dependent on conceptual,

gist, contextual, and other information types that are difficult to

quantify. Moreover, current decision-making models, such as

those for reinforcement learning, capitalize on the strong

influence of reward on behavior to estimate internal decision var-

iables (Frank and Claus, 2006), and in doing so conflate informa-

tion available in the environment, information that is actually

learned, and putative decision-making processes. Because

available information cannot be isolated by these models (and,

likewise, for many models of perceptual decisions), they do not

permit isolation of the exploration decisions used to selectively

acquire this information. Furthermore, existing decision-making
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models generally account for learning of single parameters such

as reward likelihood or perceptual identity (Ding andGold, 2013).

In contrast, episodic learning can require the integration of mul-

tiple information types over time (objects sampled within scenes,

associations among sequentially presented items, etc.), thereby

increasing the uncertainty of directly modeling decision-related

variables.

To overcome these challenges, we adopted a blended

modeling and experimental approach, whereby we modeled the

information available during episodic learning and manipulated

theability tocontrol exploration inorder to isolatedecisionsbased

on modeled information. A contextual-association learning task

required exploration of different contexts to identify contextual

rules for item-item associations (similar to Badre et al., 2009).

This allowed us to quantify contextual association information

relevant for learning, basedon extensionsof optimal foraging the-

ory that consider information as a finite resource that requires

sampling (Hills, 2006; Pirolli and Card, 1999). Using a simple

model with minimal assumptions, we quantified two aspects of

information conceptualized as having distinct influences on

learning and exploration (Frank et al., 2001; Johnson et al.,

2012): (1) newly available information (NAI), which is the increase

in available information provided when an event provides new

information regarding contextual associations, and (2) accumu-

lated available information (AAI), which is the total information

previously encountered during exploration measured at any

moment. To isolate exploration decisions, we manipulated the

ability toactivelyexploreusingacondition inwhichsubjectscould

control exploration (Active Learning) versus a condition in which

the same information was passively studied (Passive Learning,

as in Voss et al., 2011a, 2011b). This allowed us to isolate behav-

ioral and neural correlates of exploration decisions based on

modeled NAI and AAI using model-based fMRI in conjunction

with comparisons between Active and Passive conditions.

We reasoned that neural activity associated with Active deci-

sions based on NAI (relative to Passive exposure to NAI) would

implicate regions in exploration decision making based on infor-

mation that is immediately novel. Although prevailing accounts

of hippocampal and prefrontal contributions to adaptive

behavior emphasize long-term memory (Buckner and Carroll,

2007; Schacter et al., 2012), we found hippocampal and prefron-

tal involvement in NAI-based decisions, reflecting their role in the

immediate use of novel information to support exploration deci-

sions. In contrast, we identified regions of dorsal striatum asso-

ciated with Active decisions based on AAI. This implicates dorsal

striatum in exploration decisions based on accumulated infor-

mation, substantiating theorized roles in strategic behavioral

planning (Alexander et al., 1986; Martin, 1996) beyond involve-

ment in slow learning of predictable stimulus-response associa-

tions (Packard and Knowlton, 2002). Finally, measures of

background connectivity (Norman-Haignere et al., 2012) were

analyzed to test putative network-level interactivity among these

AAI-related and NAI-related regions in relation to advantageous

exploration decisions. We found that greater interactivity pre-

dicted superior learning, indicating an important role for interplay

of AAI- and NAI-related processing for advantageous explora-

tion decisions.

RESULTS

Relationships among NAI and AAI, Exploration
Strategies, and Learning
On each trial, an object and two faces were presented in one of

four screen quadrants (Figure 1). The object had two features

(shape and texture), and the quadrant determined the feature

that was relevant for the object-face association. Subjects

learned the correct object-face pairings; thus, the relevant

feature for each quadrant based on feedback. We used the

pattern of quadrant visits and object-face pairings to calculate

NAI and AAI (Figure 2; Experimental Procedures). We first sought

to identify effects of NAI and AAI on exploration choices and

on learning success in the Active condition using the full sample
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Figure 1. Contextual Object-Face Associa-

tion Task

(A) Contextual associations were based on either

shape or texture features of objects that served

as cues. In shape quadrants, only shape (e.g.,

star-shaped versus pentagon-shaped) deter-

mined the correct object-face associations. In

texture quadrants, only texture (e.g., white circles

versus black dots) determined the correct object-

face associations.

(B) Example configuration of quadrants, which

varied for different blocks of the experiment, with

two shape and two texture quadrants in each

block. Subjects were not instructed regarding the

salient feature in each quadrant but were required

to learn contextual associations via feedback.

(C) Each trial involved highlight of the selected

quadrant followed by presentation of the object

cue and two faces, during which subjects

attempted to select the target face. Trials con-

cluded with feedback.

(D) Example quadrant sequence, with the quad-

rant selected for each trial highlighted in blue.
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