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SUMMARY

Many functional network properties of the human
brain have been identified during rest and task
states, yet it remains unclear how the two relate.
We identified a whole-brain network architecture
present across dozens of task states that was highly
similar to the resting-state network architecture. The
most frequent functional connectivity strengths
across tasks closely matched the strengths
observed at rest, suggesting this is an ‘‘intrinsic,’’
standard architecture of functional brain organiza-
tion. Furthermore, a set of small but consistent
changes common across tasks suggests the exis-
tence of a task-general network architecture distin-
guishing task states from rest. These results indicate
the brain’s functional network architecture during
task performance is shaped primarily by an intrinsic
network architecture that is also present during
rest, and secondarily by evoked task-general and
task-specific network changes. This establishes
a strong relationship between resting-state func-
tional connectivity and task-evoked functional con-
nectivity—areas of neuroscientific inquiry typically
considered separately.

INTRODUCTION

Recent advances in human neuroimaging have led to numerous

studies characterizing interregional temporal relationships dur-

ing task and resting states (Fox and Greicius, 2010; Friston,

2011). Initial functional connectivity (FC) studies focused on FC

during task states (Friston, 1994), yet FC during the resting state

has come to dominate the field (Biswal et al., 2010). There are

many reasons for this shift in focus, although perhaps the most

influential is the notion that resting-state FC may characterize

an ‘‘intrinsic’’ functional network architecture that is present

across many (or all) brain states (Fox and Raichle, 2007; Vincent

et al., 2007), much like structural connectivity. If true, this would

greatly simplify the study of functional brain organization—from

needing to consider a virtually infinite variety of task states to

considering a state space strongly constrained by a single

(or few) network architecture(s). Thus, determining the universal-

ity of the resting-state network architecture is an important step

toward understanding the brain’s functional organization.

Most comparisons between task and rest FC have observed

high correspondence (Fair et al., 2007; Fox et al., 2007; Greicius

et al., 2003), but these comparisons have been limited to small

sets of task states and connections. More recent comparisons

between task and rest FC have emphasized differences in FC

patterns, also during a small number of task states (Buckner

et al., 2013; Hermundstad et al., 2013; Mennes et al., 2013).

Thus, some studies advocate a more universal architecture,

while others advocate differential task and resting architectures.

We sought to test for universality of the resting-state network

architecture in a more comprehensive manner by using large-

scale graphs built from FC among hundreds of brain regions en-

compassing everymajor brain system (Power et al., 2011) across

dozens of task states (Barch et al., 2013; Cole et al., 2010) and

rest. We hypothesized that resting-state FC would reveal an

intrinsic network architecture that would also be present across

a wide variety of task states. We also hypothesized that some

task-evoked FC changes from this intrinsic architecture would

be evident (‘‘evoked’’ network architectures) but that these

evoked changes would tend to be small and be restricted to a

relatively small number of connections for any given task. This

would suggest that the intrinsic network architecture represents

a standard state of brain organization that is modified as neces-

sary to implement task demands. Generally, this would help

bridge resting-state FC and task FC findings in the literature,

facilitating a more comprehensive account of human brain

organization.

RESULTS

Detecting the Human Brain’s Intrinsic and Evoked
Network Architectures
It may be that evoked FC changes occur in the presence of an

intrinsic functional network architecture that extends across

many or all brain states (e.g., rest and tasks). To address this

question, we used fMRI to measure temporal relationships be-

tween hundreds of brain regions across dozens of task states

and rest in single subjects. Two data sets were used. The first

data set involved the permuted rule operations cognitive para-

digm (Cole et al., 2010) that contained 12 rules that were
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permuted into 64 distinct task states in short task blocks (Fig-

ure 1A). Tasks were defined as distinct cognitive processes,

such that the same stimuli could be presented across each of

the 64 tasks, but distinct cognitive processes would be neces-

sary to respond correctly to each one. Importantly, this paradigm

isolated cognitive task set differences by minimizing perceptual

changes across tasks (e.g., changes in visual field, sensory

modality). To extend and test the robustness of findings from

the 64-task data set, we also conducted analyses with a Human

Connectome Project data set (118 subjects) that included rest

and a set of seven tasks (Figure 1B) (Barch et al., 2013). The

seven tasks were highly distinct from one another, although

they also differed in basic perceptual aspects (e.g., changes in

visual field, sensory modality), which could be a larger driver of

FC differences than cognitive task set differences. FC was esti-

mated as temporal correlations (Zalesky et al., 2012) among a set

of 264 putative functional regions throughout the brain (defined

independently to reduce potential statistical biases) (Power

et al., 2011). These correlations were estimated for task FC after

regressing out (across-trial mean) task-evoked activations and

removing the short rest periods between task blocks from

each region’s time series.

In addition to testing for the existence of an intrinsic network

architecture—an architecture common across rest and multiple

task states—we sought to identify interregional connections

unique to each task state, together comprising a set of evoked

network architectures. To estimate both intrinsic and evoked

architectures simultaneously, we used a tool (multislice commu-

nity detection) developed to extract clusters and cluster changes

in multinetwork systems (Mucha et al., 2010) and recently

applied to neuroimaging data sets (Bassett et al., 2011) (Fig-

ure 2A). Unlike other clustering algorithms, this algorithm

enabled us to identify network communities (putative functional

modules) in brain networks both within and across task states.

Using this approach, we identified network communities elicited

differentially across tasks (using a low intertask coupling para-

meter), and we also identified consensus communities present

across tasks (using a high intertask coupling parameter). The

assignment of brain regions to communities is referred to as a

‘‘partition.’’ The coupling parameter determines the extent to

which identified partitions are constrained by multiple task

states. We were most interested in low coupling parameters, in

which all task states are considered separately, and also espe-

cially interested in high coupling parameters (identified by the

production of a partition stable across additional increases in

the coupling parameter), in which all task states are considered

together. To examine the relationship between these community

partitions and a previously defined resting-state FC community

partition (Power et al., 2011) (Figure 2B), we calculated the parti-

tion similarity using the Z score of the Rand coefficient (Traud

et al., 2011).

We hypothesized that there would be significant differences

among the task partitions at low coupling parameters but that

they would converge on a consensus partition similar to the

resting-state FC community partition at high coupling parame-

ters. Note that the multislice community detection approach

forces a single consensus partition at high coupling parameters,

but this approach does not require that the consensus partition

look like any other particular partition (e.g., a resting-state FC

partition). Furthermore, this approach does not require that par-

titions differentiate from any particular other partition at low

coupling parameters.
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Figure 1. Testing Multiple Tasks per Subject

(A) The first fMRI data set involved 64 distinct tasks, composed of unique combinations of task rules (Cole et al., 2010). Each subject (n = 15) performed all 64

tasks.

(B) The second data set involved seven tasks chosen to elicit the involvement of all major cognitive domains and brain systems (Barch et al., 2013). Each subject

(n = 118) performed all seven tasks.
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