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SUMMARY

Reinforcement learning (RL) uses sequential experi-
ence with situations (‘‘states’’) and outcomes to
assess actions. Whereas model-free RL uses this
experience directly, in the form of a reward prediction
error (RPE), model-based RL uses it indirectly,
building a model of the state transition and outcome
structure of the environment, and evaluating actions
by searching this model. A state prediction error
(SPE) plays a central role, reporting discrepancies
between the current model and the observed state
transitions. Using functional magnetic resonance
imaging in humans solving a probabilistic Markov
decision task, we found the neural signature of an
SPE in the intraparietal sulcus and lateral prefrontal
cortex, in addition to the previously well-character-
ized RPE in the ventral striatum. This finding supports
the existence of two unique forms of learning signal
in humans, which may form the basis of distinct
computational strategies for guiding behavior.

INTRODUCTION

One of the most critical divisions in early-20th century animal

learning psychology was that between behaviorist notions

such as Thorndike’s (Thorndike, 1933), that responses are

triggered by stimuli through associations strengthened by rein-

forcement, and Tolman’s proposal (Tolman, 1948), that they

are instead planned using an internal representation of environ-

mental contingencies in the form of a ‘‘cognitive map.’’ Although

the original debate has relaxed into a compromise position, with

evidence at least in rats that both mechanisms exist and adapt

simultaneously (Dickinson and Balleine, 2002), a full character-

ization of their different learning properties and the way that their

outputs are integrated to achieve better control is as yet missing.

Here, we adopt specific computational definitions that have

been proposed to capture the two different structures of

learning. We use them to seek evidence of the two strategies

in signals measured by functional magnetic resonance imaging

(fMRI) in humans learning to solve a probabilistic Markov deci-

sion task.

Theoretical work has considered the two strategies to be

model-free and model-based, and has suggested how their

outputs might be combined depending on their respective

certainties (Daw et al., 2005; Doya et al., 2002). In a model-based

system, a cognitive map or model of the environment is

acquired, which describes how different ‘‘states’’ (or situations)

of the world are connected to each other. Action values for

different paths through this environment can then be computed

by a sort of mental simulation analogous to planning chess

moves: searching forward along future states to evaluate the

rewards available there. This is termed a ‘‘forward’’ or ‘‘tree-

search’’ strategy. In contrast, a model-free learning system

learns action values directly, by trial and error, without building

an explicit model of the environment, and thus retains no explicit

estimate of the probabilities that govern state transitions (Daw

et al., 2005). Because these approaches evaluate actions using

different underlying representations, they produce different

behaviors in experiments aimed at investigating their psycholog-

ical counterparts. Most such experiments (Dickinson and

Balleine, 2002) study whether animals adapt immediately to

changes in the environment. For instance, in classic ‘‘latent

learning’’ studies (Tolman and Honzik, 1930), animals are pre-

trained on a maze, then rewards are introduced at a particular

location to probe whether subjects can plan new routes there

taking into account previously learned knowledge of the maze

layout. The experiment discussed here, though nonspatial,

follows this scheme.

Learning in both model-based and model-free strategies is

typically driven by prediction errors, albeit with different meaning

and properties in each case. A prediction error is a difference

between an actual and an expected outcome and this signal

is commonly thought of as the engine of learning, as it is used

to update expectations in order to make predictions more

accurate.
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In the case of model-free learning, this error signal (called the

reward prediction error, RPE) amounts to the difference between

the actual and expected reward at a particular state. In the

context of reinforcement learning (RL), this error signal is used

to learn values for action choices that maximize expected future

reward (Sutton and Barto, 1998). An abundance of evidence

from both single-unit recordings in monkeys (Bayer and

Glimcher, 2005; Schultz, 1998; Schultz et al., 1997) and human

fMRI (D’Ardenne et al., 2008) suggests that dopaminergic

neurons in the ventral tegmental area and substantia nigra pars

compacta exhibit a response pattern consistent with a model-

free appetitive RPE. Furthermore, BOLD signals in the ventral

striatum (vStr) show response properties consistent with dopa-

minergic input (Delgado et al., 2000, 2008; Knutson et al.,

2001, 2005), most notably correlating with RPEs (Haruno and

Kawato, 2006; McClure et al., 2003; O’Doherty et al., 2003).

Figure 1. Task Design and Experimental

Procedure

(A) The experimental task was a sequential two-

choice Markov decision task in which all decision

states are represented by fractal images. The

task design follows that of a binary decision tree.

Each trial begins in the same state. Subjects can

choose between a left (L) or right (R) button press.

With a certain probability (0.7/0.3) they reach one

of two subsequent states in which they can choose

again between a left or right action. Finally, they

reach one of three outcome states associated

with different monetary rewards (0¢, 10¢, and 25¢).

(B) The experiment proceeded in two fMRI scan-

ning sessions of 80 trials each. In the first session,

subject choices were fixed and presented to them

below the fractal image. However, subjects could

still learn the transition probabilities. Between

scanning sessions subjects were presented with

the reward schedule that maps the outcome states

to the monetary payoffs. This mapping was

rehearsed in a short choice task. Finally, in the

second scanning session, subjects were free to

choose left or right actions in each state. In addi-

tion, they also received the payoffs in the outcome

states.

Model-based action valuation requires

predicting which state is currently ex-

pected, given previous states and/or

choices. These expectations can be

learned using a different prediction error,

called the state prediction error (SPE),

which measures the surprise in the new

state given the current estimate of the

state-action-state transition probabilities.

The central questions for the current

study are whether the human brain

computes the SPE as well as the RPE,

and, if so, what the different neural signa-

tures of these two signals are. One indi-

cation that the brain may compute SPEs

is that neural signals marking gross viola-

tions of expectations have long been reported, particularly using

EEG (Courchesne et al., 1975; Fabiani and Friedman, 1995) and

EEG in combination with fMRI (Opitz et al., 1999; Strobel et al.,

2008). Unlike the prediction error signals associated with dopa-

mine activity, which are largely reward-focused and associated

with model-free RL (Holroyd and Coles, 2002), these respond

to incorrect predictions of affectively neutral stimuli. Here, we

study quantitatively how state predictions are learned, and

seek trial-by-trial neural signals that reflect the dynamics of

this learning.

We designed a probabilistic sequential Markov decision task

involving choices in two successive internal states, followed by

a rewarded outcome state (see Experimental Procedures). The

task has the structure of a decision tree, in which each abstract

decision state is represented by a fractal image (Figure 1A). In

each trial, the participants begin at the same starting state and

Neuron

Reward and State Prediction Errors in Humans

586 Neuron 66, 585–595, May 27, 2010 ª2010 Elsevier Inc.



Download	English	Version:

https://daneshyari.com/en/article/4321827

Download	Persian	Version:

https://daneshyari.com/article/4321827

Daneshyari.com

https://daneshyari.com/en/article/4321827
https://daneshyari.com/article/4321827
https://daneshyari.com/

