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First, we discuss three specific classes of relations, which allow to model the essential 
constituents of graphs, such as vertices and (directed or undirected) edges. Based on 
Kawahara’s characterisation of the cardinality of relations we then derive fundamental 
properties on their cardinalities. As main applications of these results, we formally 
verify four relational programs, which implement approximation algorithms by using the 
assertion-based method and relation-algebraic calculations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Formal program verification means to show with mathematical rigour that a program is correct with respect to a formal 
problem specification. In the case of imperative programs, and when using the assertion-based Floyd-Hoare-approach, speci-
fications usually consist of pre- and post-conditions. Program verification is then mainly based on loop invariants. To support 
formal program verification, adequate algebraic frameworks are very helpful since they support calculational reasoning and 
often even equational reasoning.

Relation algebra (as introduced in [26] and further developed in [17,24,25,27]) plays a prominent role for computational 
problems on discrete structures such as (directed or undirected) graphs. This is due to the fact that relations and many 
discrete structures are essentially the same or closely related. For instance, a directed graph is nothing else than a relation on 
a set of vertices and also for other classes of graphs there are simple and elegant ways to model them relation-algebraically, 
as shown in [24], for example. With regard to proofs, the use of relation algebra has the advantage of frequently clarifying
the proof structure, reducing the danger of wrong proof steps and opening the possibility for proof mechanisation, e.g., by 
automated theorem provers or proof assistant tools. Examples for the latter can be found in [7–9,14] using the automated 
theorem prover Prover9 and the proof assistants Coq and Isabelle/HOL, respectively. Finally, the relation-algebraic framework 
supports prototyping and validation tasks in a significant manner, for instance, by computer systems like RelView; see e.g., 
[5,9,29].
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In [15] Kawahara acknowledges the considerable influence of the Schmidt and Ströhlein’s textbook [24] to the formal 
study of graphs from a relational point of view. However, he also mentions that “. . . the cardinality of relations is treated 
rather implicitly or intuitively . . . ” [15, p. 251]. To close this gap, he develops a cardinality operation on relations and 
demonstrates that the corresponding laws can be used to reason about cardinalities in a calculational and algebraic manner.

The present paper is a continuation of Kawahara’s work. Whereas he considers applications in basic graph theory 
(theorems of Hall and König), we are interested in applications concerning relational programs and their formal devel-
opment/verification, as initiated in [2]. We concentrate on approximation algorithms, where cardinalities of certain sets play 
an important role when proving the desired approximation bound. To the best of our knowledge such algorithms have not 
yet been analysed using relation algebra, and hence we extend the area of applications for relation algebra. Experience has 
shown that a relation-algebraic approach to algorithms and programming besides the basic constants, operations and tests 
of relation algebra frequently requires the use of further operations. In our previous work especially choice operations for 
relational points and single-pair-relations (corresponding to the choice of a vertex or an edge in graph theory) play an 
important role as, for example, demonstrated in [2,3,5,6]. In [2] these concepts are defined via certain laws and hence can 
be seen as an axiomatic extension of relation algebra. This extension is in line with other extensions such as projection 
relations [24] and embedding relations [6]. Therefore, the laws of [15] constitute a further axiomatic extension of relation 
algebra by a cardinality operation. Because of the importance of the choice operations, a natural task is to investigate the 
cardinalities of the objects they compute.

The remainder of the paper is organised as follows: in Section 2 we present the relation-algebraic preliminaries. Next, in 
Section 3, we introduce the concepts of relational points, atoms and edges, i.e., of the objects the choice functions compute, 
and prove some of their fundamental properties. In Section 4 we use Kawahara’s characterisation of the cardinality of 
relations as an axiomatisation of a cardinality operation and present fundamental properties concerning the cardinality of 
the composition of univalent relations and mappings, as well as of points with specific types, atoms and edges. We use the 
cardinality axioms and properties in the following Sections 5 to 8 to formally verify relational variants of four well-known 
approximation algorithms by combining relation-algebraic reasoning with the assertion-based program verification method. 
We conclude in Section 9 with a short summary and some remarks concerning tool support and future work.

2. Relation-algebraic preliminaries

In this section we recall the fundamentals of relation algebra based on the heterogeneous approach of [24,25]. Set-
theoretic relations form the standard model of relation algebras. We assume the reader to be familiar with the basic 
operations on them, viz. RT (transposition, conversion), R (complementation, negation), R ∪ S (union), R ∩ S (intersec-
tion), R;S (composition), the predicates R ⊆ S (inclusion) and R = S (equality), as well as the special relations O (empty 
relation), L (universal relation) and I (identity relation). The Boolean operations, the inclusion and the constants O and L
form Boolean lattices. Further well-known properties are the distributivity laws Q ;(R ∪ S) = Q ;R ∪ Q ;S , (R ∪ S)T = RT ∪ ST

and (R ∩ S)T = RT ∩ ST , the sub-distributivity law Q ;(R ∩ S) ⊆ Q ;R ∩ Q ;S , the laws RT = R
T

, (RT)T = R and (R;S)T = ST;RT , 
and the monotonicity of transposition, union, intersection and composition.

The theoretical framework for these laws (and many others) to hold is that of a (heterogeneous) relation algebra in the 
sense of [24,25], with typed relations as elements. This implies that each relation has a source and a target. We write 
R : X ↔ Y to express that X is the source, Y is the target and X ↔ Y is the type of R . In case of set-theoretic relations 
R : X ↔ Y means that R is a subset of X ×Y . As constants and operations of a relation algebra we have those of set-theoretic 
relations, where we frequently overload the symbols O, L and I, i.e., avoid the binding of types to them. Only when necessary 
we use indices such as LXY for the universal relation of type X ↔ Y and IX X for the identity relation of type X ↔ X . The 
axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all relations of the same type under the Boolean operations, the inclusion, the empty 
relation and the universal relation,

(2) the associativity of composition and that identity relations are neutral elements with respect to composition,
(3) that Q ;R ⊆ S , Q T;S ⊆ R and S;RT ⊆ Q are equivalent, for all relations Q , R and S (with appropriate types),
(4) that R �= O implies L;R;L = L, for all relations R and all universal relations (with appropriate types).

In [24] the laws of (3) are called the Schröder rules and (4) is called the Tarski rule. In the relation-algebraic proofs of this 
paper we will only mention applications of (3), (4) and ‘non-obvious’ consequences of the axioms, like

Q ;R ∩ S ⊆ (Q ∩ S;RT);(R ∩ Q T;S) ,

for all relations Q : X ↔ Y , R : Y ↔ Z and S : X ↔ Z . In [24] this inequality is called the Dedekind rule. Furthermore, we will 
assume that complementation and transposition bind stronger than composition, composition binds stronger than union 
and intersection, and that all relation-algebraic expressions and formulae are well-typed. The latter assumption allows us to 
suppress many type annotations, since types of relations can be derived from other relations with known types, using the 
typing rules of the relational operations.

In the following we recapitulate some well-known classes of relations used in the remainder of this paper. For more 
details see e.g. [24,25].
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