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The code base of a software system undergoes changes during its life time. For object-
oriented languages, classes are adapted, e.g., to meet new requirements, customize the 
software to specific user functionalities, or refactor the code to reduce its complexity. 
However, the adaptation of class hierarchies makes reasoning about program behavior 
challenging; even classes in the middle of a class hierarchy can be modified. This paper 
develops a proof system for analyzing the effect of operations to adapt classes, in the 
context of method overriding and late bound method calls. The proof system is incremental
in the sense that reverification is avoided for methods that are not explicitly changed 
by adaptations. Furthermore, the possible adaptations are not unduly restricted; i.e., 
flexibility is retained without compromising on reasoning control. To achieve this balance, 
we extend the mechanism of lazy behavioral subtyping, originally proposed for reasoning 
about inheritance when subclasses are added to a class hierarchy, to deal with the more 
general situation of adaptable class hierarchies and changing specifications. The reasoning 
system distinguishes guaranteed method behavior from requirements toward methods, and 
achieves incremental reasoning by tracking guarantees and requirements in adaptable class 
hierarchies. We show soundness of the proposed proof system.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An intrinsic property of software in the real world is that it needs to evolve. This can be during the initial development
phase, as improvements to meet new requirements, or as part of a software customization process such as, e.g., feature 
selection in software product lines or delta-oriented programming [1]. As the code is enhanced and modified, it becomes 
more complex and drifts away from its original design [2]. For this reason, it may be desirable to redesign the code base 
to improve its structure, thereby reducing software complexity. For example, the process of refactoring in object-oriented 
software development describes changes to the internal structure of software to make the software easier to understand 
and cheaper to modify without changing its observable behavior [3]. In this paper, the term adaptable class hierarchies
covers transformations of classes during the development, improvement, customization, and refactoring of class hierarchies. 
Adaptations are achieved by means of update operations for adding code to a class such as new fields, method definitions, 
and implements clauses, by modifying method definitions, and by removing methods (under certain conditions).

Reasoning about properties of object-oriented systems is in general non-trivial due to complications including class 
inheritance and late binding of method calls. Object-oriented software development is based on an open world assumption; 
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i.e., class hierarchies are typically extendable. In order to have reasoning control under such an open world assumption, 
it is advantageous to have a framework which controls the properties required of method redefinitions. With a modular 
reasoning framework, a new subclass can be analyzed in the context of its superclasses, such that the properties of the 
superclasses are guaranteed to be maintained. This has the significant advantage that each class can be fully verified at 
once, independent of subclasses which may be designed later. The best known modular reasoning framework for class 
hierarchies is behavioral subtyping [4]. However, behavioral subtyping has been criticized for being overly restrictive and 
is often violated in practice [5]. For these reasons it is interesting to explore alternative approaches which allow more 
flexibility, although this may lead to more proof work.

Incremental reasoning frameworks generalize modular reasoning by possibly generating new verification conditions for 
superclasses in order to guarantee established properties. Additional properties may be established in the superclasses 
after the initial analysis, but old properties remain valid. Observe that these frameworks subsume modularity: if the initial 
properties of the classes are sufficiently strong (for example by adhering to a behavioral contract), it will never be necessary 
to add new properties later. Lazy behavioral subtyping is a formal framework for such incremental reasoning, which allows 
more flexible code reuse than modular frameworks. The basic idea underlying lazy behavioral subtyping is a separation of 
concerns between the behavioral guarantees of method definitions and the behavioral requirements to method calls. Both 
guarantees and requirements are manipulated through an explicit proof-context: a book-keeping framework controls the 
analysis and proof obligations in the context of a given class. Properties are only inherited by need. Inherited requirements 
on method redefinition are as weak as possible while still ensuring soundness.

Lazy behavioral subtyping seems well-suited for the incremental reasoning style desirable for object-oriented software 
development, and can be adjusted to different mechanisms for code reuse. It was originally developed for single inheritance 
class hierarchies [6], but has later been extended to multiple inheritance [7] and to trait-based code reuse [8].

Adaptable class hierarchies add a level of complexity to proof systems for object-oriented programs, as superclasses in 
the middle of a class hierarchy can change. Unrestricted, such changes may easily violate previously verified properties 
in both sub- and superclasses. The management of verification conditions becomes more complicated than in the case of 
extending a class hierarchy at the bottom with new subclasses. This paper extends the approach of lazy behavioral subtyping 
to allow incremental reasoning about adaptable class hierarchies.

The approach is presented using a small object-oriented language and a number of basic update operations for adapting 
class definitions. We consider a series of “snapshots” of a class hierarchy during a development and adaptation process. 
The developer applies basic update operations and analysis steps to the class hierarchy between these snapshots. Based on 
the lazy behavioral subtyping framework, the specified and required properties of method definitions and method calls are 
tracked through these adaptation steps.

The paper is structured as follows: Section 2 presents the language considered and provides a motivating example 
for update operations. Section 3 presents our program logic for classes, based on proof outlines. Section 4 presents lazy 
behavioral subtyping and the verification environments needed for analyzing class adaptations. We explain the proof system 
for the basic update operations in Section 5 and finally, related work is discussed in Section 6 before we conclude the paper 
in Section 7.

2. The programming language

We consider an object-oriented kernel language akin to Featherweight Java [9], in which pointers are typed by behavioral 
interfaces and methods are annotated with pre/postconditions, The syntax for classes and interfaces in the language is given 
in Fig. 1. A program consists of a set of interfaces and class definitions, followed by a method body. A behavioral interface 
I extends a list I of superinterfaces and declares a set MS of method signatures with behavioral annotations. We refer to 
the behavioral annotation occurring in a method signature as a guarantee for the method. These guarantees reflect semantic 
constraints on the use of the declared methods, and are given as pairs (p, q) of pre- and postconditions to the signatures. 
An interface may introduce additional constraints to methods already declared in superinterfaces. A class may inherit from 
a single superclass, adding fields f , methods M , and method guarantees MS.

Method parameters are read-only, and we assume that programs are well-typed. A method body consists of a sequence 
of standard statements followed by return e, where e is the value returned by the method. Methods of type Void need no 
return statements and are called without assignment to actual parameters.

T ::= I | Bool | Int | Nat | Double K ::= interface I extends I {MS}
M ::= MS {T x; t; return e} L ::= class C extends C implements I {T f ; M MS}
v ::= f | x MS ::= [T | Void] m (T x) : (a,a)

t ::= t; t | v := rhs | e.m(e) | if b then t else t fi | skip
rhs ::= new C( ) | e.m(e) | m(e) | e

Fig. 1. The language syntax. C is a class name, and I an interface name. Variables v are fields ( f ) or local variables (x), and e denotes side-effect free 
expressions over the variables, b expressions of Boolean type, and a is an assertion. Vector notation denotes collections, as in the expression list e, interface 
list I (with a slight abuse of notation, we write T x to denote a list of variable declarations), and in sets such as K , L, MS and M . Let nil denote the empty 
list. To distinguish assignments from equations in specifications and expressions, we use := and = respectively.
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