
J. Parallel Distrib. Comput. 96 (2016) 12–26

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Co-optimizing application partitioning and network topology for a
reconfigurable interconnect
Deepak Ajwani a,∗, Adam Hackett b, Shoukat Ali c, John P. Morrison d, Stephen Kirkland b,1

a Bell Labs, Alcatel-Lucent, Dublin 15, Ireland
b Hamilton Institute, National University of Ireland Maynooth, Ireland
c Elastica, San Jose, CA, United States
d The Centre for Unified Computing, University College Cork, Cork, Ireland

h i g h l i g h t s

• We give an algorithm to compute topologies of reconfigurable interconnect systems.
• We optimize, for reconfigurable networks, topology, routing, and task partitioning.
• We compute a high-throughput seed topology from structural properties of the task.

a r t i c l e i n f o

Article history:
Received 25 June 2013
Received in revised form
15 February 2016
Accepted 21 April 2016
Available online 28 April 2016

Keywords:
Network configuration algorithm
Reconfigurable interconnect topology
Optical circuit switch
Topology-aware graph partitioning
Stream-computing

a b s t r a c t

To realize the full potential of a high-performance computing systemwith a reconfigurable interconnect,
there is a need to design algorithms for computing a topology that will allow for a high-throughput
load distribution, while simultaneously partitioning the computational task graph of the application for
the computed topology. In this paper, we propose a new framework that exploits such reconfigurable
interconnects to achieve these interdependent goals, i.e., to iteratively co-optimize the network topology
configuration, application partitioning and network flow routing to maximize throughput for a given
application. We also present a novel way of computing a high-throughput initial topology based on the
structural properties of the application to seed our co-optimizing framework. We show the value of
our approach on synthetic graphs that emulate the key characteristics of a class of stream computing
applications that require high throughput. Our experiments show that the proposed technique is fast and
computes high-quality partitions of such graphs for a broad range of hardware parameters that varies the
bottleneck from computation to communication. Finally, we show how using a particular topology as a
seed to our framework significantly reduces the time to compute the final topology.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Optical circuit switches have recently been proposed as a low-
cost, low-power and high-bandwidth alternative in the design
of high-performance compute clusters (e.g., [41,27,4,39]). At the
same time, these switches allow users to configure the network
topology to suit the requirements of the application.

The option of configuring the interconnect opens up new pos-
sibilities for improvement in topology-aware graph partitioning

∗ Corresponding author.
E-mail address: deepak.ajwani@alcatel-lucent.com (D. Ajwani).

1 Current address: Department of Mathematics, University of Manitoba, Win-
nipeg, Manitoba, Canada.

approaches. Instead of asking the question ‘‘given an application
graph G, how would you partition it on a set of compute nodes
connected in topology H?’’ we are wondering ‘‘given an applica-
tion graph G, howwould you best interconnect the compute nodes
to elicit the best possible partitioning and routing of G on the in-
terconnect topology?’’ This research addresses this question by for-
mulating an iterative strategy for co-optimizing the partitioning of
the application graph and the configuration of the network topol-
ogy.

There are two constraints that further complicate this issue. In
a real system, a compute node has only a fixed number of ports to
connect to the reconfigurable switch. Secondly, the reconfigurable
switch has a limit on the maximum number of simultaneous links
that it can maintain. Therefore, as an unavoidable part of our
strategy, we also try to minimize the maximum traffic on the

http://dx.doi.org/10.1016/j.jpdc.2016.04.010
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.04.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.010&domain=pdf
mailto:deepak.ajwani@alcatel-lucent.com
http://dx.doi.org/10.1016/j.jpdc.2016.04.010

D. Ajwani et al. / J. Parallel Distrib. Comput. 96 (2016) 12–26 13

interconnect while satisfying the above two constraints. Because
our framework attempts to co-optimize topology configuration,
application partitioning and interconnect routing, we refer to it as
TPR co-optimizing framework.

Our approach is not tied to a particular communication pattern
within the application. In our experimental results, we show
performance gains for thousands of application graphs randomly
selected, (with random communication patterns) from within
the class of stream computing applications. Please note that our
algorithm works for general graphs, even though our experiments
are done on class of graphs that emulate stream computing
applications.

The rest of this paper is structured as follows. We present the
notations, definitions, the problem addressed and our key contri-
butions in Section 2. Section 3 describes our main framework to-
gether with all the details of the individual steps. Our experiments
with this framework are reported in Section 4. In Section 3.2, we
show that seeding the framework with a good initial topology and
then conducting a restricted search around it significantly reduces
the time to compute the final topology. We describe some related
work in Section 5 and conclude with future research directions in
Section 6.

2. Preliminaries

2.1. Notations

We refer to application graph as G(VG, EG) (or simply G) and to
avoid tedious notation, also use the same notation for contracted
application graphs. The notation H(VH , EH) (or simply H) is used
to refer to the topology graph. The elements of VG are referred
to as vertices while elements in VH are referred to as nodes or
compute nodes. The notation NP denotes the total number of
processors in the supercomputer. Since the nodes in the topology
graph correspond to the actual compute nodes in the architecture,
we have NP = |VH | (although they need not all be connected or
have some computation load). We are interested in the mapping
of vertices in application graph to nodes in the topology graph. The
weight of a vertex or node u is denoted bywv(u), while theweights
on an edge e of either the application graph or topology graph is
referred as we(e).

2.2. Problem definition

We are given a computational task graph G(VG, EG) where the
vertices denote computational kernels and the edges capture the
dependencies between the different computational kernels. The
weights on vertices denote the average amount of computation
that needs to be performed at the corresponding kernel to
produce one element of output. Similarly, the weight on an edge
represents the average amount of data transfer between the
kernels (corresponding to the two incident vertices) to produce
one element of output.

We assume that the compute nodes in the high-performance
system are identical with the same processing speed (hereafter
denoted by Scomp). These compute nodes are connected through
a reconfigurable switch, which can alter the topology to suit the
application.We also assume that bandwidth on all links connected
through the reconfigurable switch is identical (denoted by Scomm).

In order to run the application on the system, we need to map
each vertex v ∈ VG to a compute node and route each edge e ∈ EG
along some path in the network topology. Let µ(v) be a mapping
that specifies the compute node to which a particular vertex v is
mapped. Let ρ(e) be the sequence of communication links that
are used to route an edge e in EG. Given such a mapping and a
routing scheme, the computation load on a compute node Pi ∈

VH is wv(Pi) =


(u∈VG)∧(µ(u)=Pi)
wv(u) and the communication

load over a link e ∈ EH is we(e) =


(e′∈EG)∧(e∈ρ(e′)) we(e′).
Since all computation over the nodes and communication over
the links happen concurrently, the throughput is constrained by
the slowest element. We define the throughput of a node Pi to be
Scomp/wv(Pi) and the throughput of a link e to be Scomm/we(e). The
compute throughput of the system is the minimum throughput
of a node and the communication throughput of the system is
the minimum throughput over a link. The throughput generated
by the overall system is the smaller of the compute throughput
and the communication throughput. Note that our definition of
throughput arises out of stream computing applications, wherewe
view the compute nodes and communication links as processing
units running concurrently so that the overall throughput is equal
to the throughput of the slowest processing unit (similar to
the throughput of a fetch–decode–execute pipeline where fetch,
decode and execute stages run concurrently). Nonetheless, other
problem-specific definitions can be used (with an accompanying
change to the performance vector in Section 3.3.3).

In a real system, a compute node has only a fixed number of
ports to connect to the reconfigurable switch. Let this constraint
be called the max-degree constraint, denoted as ∆max. Also, the
reconfigurable switch has a limit on the maximum number of
simultaneous links that it can maintain. We refer to this limit
as max-edges constraint, denoted as Emax. Thus, the switch can
configure any topology that satisfies the constraints thatmaximum
degree in the topology is no more than ∆max and the total number
of links is not more than Emax. Note that these constraints on
the space of configurable topologies are very natural and can
easily arise in many other applications. Our goal is three-fold.
(a) Compute a network topology graph H that is likely to elicit a
high throughputmapping for the application graph G. (b) Compute
a mapping of vertices in VG to nodes in VH to achieve a high
computation throughput. (c) Compute a routing scheme for edges
in EG to communication links inH so as tominimize congestion and
thereby provide high communication throughput.

A good topology is one that allows a mapping and a routing
scheme to yield a high throughput (ideally close to the optimum).
Since the definition of a good topology depends on the difficult
problems of computing good mapping and routing schemes, it is
not easy to compute.We therefore propose a frameworkwherewe
derive a good initial topology based on the structural properties of
the application graph and then iteratively improve this topology
by performing local modifications.

Note that although the connections created by optical switch
are directed in nature, we treat them as undirected. This is because
engineers invariably pair these optical cables to keep the routing
protocols simple. Often, the two optical fibers in an optical cable
are used for making the data-transfer bidirectional.

2.3. Key contributions

Our key contributions are as follows.
(1) We propose a new framework that iteratively co-optimizes
the discovery of a good network topology that is configurable
within the constraints of the reconfigurable interconnect, and
the computation of a good partitioning, mapping and routing
solution for deploying the application on the computed topology
to maximize throughput. In contrast to the existing literature
on graph partitioning, mapping and routing, our problem is
challenging because we are also optimizing for the topology while
computing the mapping of an application graph to the topology.
Thus in our framework, the topology is iteratively altered to
alleviate the computation and communication bottlenecks that are
identified with the mapping solution.

Download English Version:

https://daneshyari.com/en/article/432264

Download Persian Version:

https://daneshyari.com/article/432264

Daneshyari.com

https://daneshyari.com/en/article/432264
https://daneshyari.com/article/432264
https://daneshyari.com

