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SUMMARY

Sequential neural activity patterns are as ubiquitous
as the outputs they drive, which include motor
gestures and sequential cognitive processes. Neural
sequences are long, compared to the activation
durations of participating neurons, and sequence
coding is sparse. Numerous studies demonstrate
that spike-time-dependent plasticity (STDP), the
primary known mechanism for temporal order
learning in neurons, cannot organize networks to
generate long sequences, raising the question of
how such networks are formed. We show that heter-
osynaptic competition within single neurons, when
combined with STDP, organizes networks to
generate long unary activity sequences even without
sequential training inputs. The network produces a
diversity of sequences with a power law length distri-
bution and exponent�1, independent of cellular time
constants. We show evidence for a similar distribu-
tion of sequence lengths in the recorded premotor
song activity of songbirds. These results suggest
that neural sequences may be shaped by synaptic
constraints and network circuitry rather than cellular
time constants.

INTRODUCTION

Reaching for or throwing objects, walking, and vocalizing are a

few of the ways vertebrates interact with the world. Vertebrates

also plan, visualize, or review action and event sequences.

Underlying the time-varying patterns of muscle activation or

sequential cognitive processing are sequences of neural activity.

Such sequences are found in various parts of the brain, including

the cortex (Schwartz and Moran, 1999; Andersen et al., 2004;

Pulvermüller and Shtyrov, 2009; Luczak et al., 2007; Buonomano,

2003; Ikegaya et al., 2004; Tang et al., 2008), hippocampus

(Nádasdy et al., 1999; Louie and Wilson, 2001; Pastalkova

et al., 2008; Davidson et al., 2009), basal ganglia (Barnes et al.,

2005), and the songbird HVC (Hahnloser et al., 2002; Kozhevni-

kov and Fee, 2007), under various behavioral states. The ubiquity

of repeating sequential neural patterns across species, task and

nontask conditions, and even in vitro suggests that the mecha-

nisms for creating sequence-producing circuits may be quite

general and robust. Yet little is known, from experiment or theory,

about what these mechanisms might be. In this work, we investi-

gate plasticity rules that could sculpt sequence-producing neural

circuits out of initially disordered networks.

What are some of the properties of sequential neural activity

patterns? Sequences are frequently much longer than the

membrane and synaptic time-constants of individual neurons.

The coding of sequences is sparse. For instance, individual pre-

motor neurons in motor cortex are active in only small portions of

a figure-eight arm tracing trajectory in monkeys (Schwartz and

Moran, 1999). Similarly, hippocampal place cells fire at one

or a few locations of a long track while the animal runs or as it

rehearses its possible forward trajectories at a decision point

(Pastalkova et al., 2008) or as it replays in sleep its place cell acti-

vation sequence (Louie and Wilson, 2001). Zebra finches

produce song motifs lasting up to 1 s, while individual neurons

in the high-level premotor center are each active for only single

bursts of about 6 ms duration (Hahnloser et al., 2002) over the

full song sequence. In other words, the high-level coding of

sequential activity in the brain is sparse, with single neurons firing

for small portions of the entire sequence.

Many sequential behaviors are also ‘‘modular,’’ composed of

gestures or shorter sequences that can be flexibly arranged

and combined. The underlying neural codes are also found to

be modular, sometimes even when the behavior itself is not obvi-

ously so. For example, although the song of a zebra finch

consists of a largely stereotyped single sequence of syllables,

the neural drive underlying the song appears to consist of a

concatenation of a disjoint set of separate subsequences of

neural activity (Tanji, 2001; Glaze and Troyer, 2006; Wang

et al., 2008; Davidson et al., 2009).

Several network-level models seek to explain the propagation

of sequential neural activity. A number of such models can be

grouped into the category of ‘‘synaptic chain’’ networks (Amari,

1972; Kleinfeld and Sompolinsky, 1988; Abeles, 1991; Drew

and Abbott, 2003; Li and Greenside, 2006; Jin et al., 2007). In

synaptic chain networks, the connectivity matrix is asymmetric

or directional, with one group of neurons connecting to the

next, and so on. Activity in the network flows in the direction of
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the underlying connections. Such an architecture is consistent

with the dynamics of sequence generation in the premotor

nucleus HVC of songbirds (discussed in Fiete and Seung, 2008;

Weber and Hahnloser, 2007). Synaptic chain models represent

a first step toward understanding neural sequence generation,

but the requisite network connectivity is hand designed and

hard wired. There is relatively little experimental or theoretical

understanding of how initially unstructured networks may orga-

nize into synaptic chain configurations. Similarly, it remains

unknown how multiple neural subsequences of varying length

(Tanji, 2001; Wang et al., 2008; Davidson et al., 2009) are formed.

Spike-time-dependent plasticity (STDP) rules demonstrably

allow networks to perform next-step recall of sequentially pre-

sented inputs: STDP rules translate repeated sequential activa-

tions of pairs of neurons into a permanent increase in the synaptic

strength from the first onto the second neuron (ordered by time of

activation), while weakening the reverse connection (Bi and Poo,

1998, 2001; Abbott and Nelson, 2000), making STDP a natural

candidate for explaining synaptic chain formation.

But simulation studies make it clear that STDP rules with

bounds on individual synaptic strengths are largely unsuccessful

at producing networks that autonomously generate long or

sparse neural activity sequences (Aviel et al., 2003; Levy et al.,

2001; Suri and Sejnowski, 2002; Rao and Sejnowski, 2003; Now-

otny et al., 2003). This is because STDP tends to enhance pop-

ulation synchrony (temporal bunching) and concentrate activity

in a few winning neurons (spatial bunching): the forward synapse

between a pair of neurons firing in close succession will be

strengthened, thereby further decreasing the lag between their

firing times and thus promoting their synchrony (Buonomano,

2005). A neuron that fires frequently early on will have its inputs

strengthened and will also tend to successfully drive its outputs,

quickly becoming a hub that drives simultaneous activity in

a large fraction of the network. These results illustrate the diffi-

culty encountered in explaining how various brain areas could

organize to generate sequential patterns of neural activity.

One method for forming long sequences using STDP is to

consider a network of intrinsically bursting neurons and sequen-

tially grow a chain by restricting synaptic plasticity to just the few

neurons at the end of the growing chain (Jun and Jin, 2007).

However, this approach does not allow for the simultaneous

formation of multiple chains and requires a separate scheme

for producing a range of chain lengths.

A cellular property that has not been linked with sequence-

producing networks or sequence learning is heterosynaptic

competition. Heterosynaptic competition for synapse growth

or total synaptic strength has been documented at both pre-

and postsynaptic neurons. For example, postsynaptic neurons

balance activity-dependent potentiation of an input synapse by

inducing heterosynaptic depression among other input

synapses, conserving the total synaptic weight onto the neuron

(Royer and Paré, 2003). Similarly, the dependence of long-term

potentiation on the synthesis of new proteins provides neurons

with the ability to constrain the strengthening and weakening

of outgoing synapses on the full-cell level (Huber et al., 2000;

Fonseca et al., 2004, 2006).

We show that when STDP is combined with heterosynaptic

competition for scarce synapse-building resources on the level

of individual neurons, initially random neural networks robustly

self-organize to form multiple synaptic chains of different

lengths. If inputs to the network are sequential and dense, the

combined plasticity rules drive the network to rapidly learn unary

versions of the input sequence. Surprisingly, a network with

these plasticity rules self-organizes to produce long unary chains

of activity even if the training inputs are temporally random, with

no sequential structure.

For concreteness, we identify our model network with the

songbird premotor area HVC. The reasons for this choice are

that, first, HVC appears to originate sequential activity, rather

than inheriting it as sequential input from an upstream area (Not-

tebohm et al., 1976, 1982; Bottjer et al., 1984; Hahnloser et al.,

2002; Fee et al., 2004; Long and Fee, 2008); second, the constit-

uent neuron types and their activity patterns during song are

well-characterized (Mooney, 2000; Hahnloser et al., 2002;

Mooney and Prather, 2005; Kozhevnikov and Fee, 2007); and

third, HVC is thought to possess an underlying synaptic chain

structure (arguments in Fiete and Seung, 2008; Seung, 2009).

We demonstrate that the lengths of the chains formed by

learning obey a power law that resembles the distribution of

HVC chain lengths, as inferred from electrical stimulation exper-

iments in songbirds. The model, because of its genericness,

could be applied to other areas where sequences are known to

originate and where the underlying network architecture is that

of a synaptic chain. In these cases, it would lead to similar

predictions on the distribution of chain lengths and on the

elements required for chain formation.

RESULTS

The Model
The songbird HVC consists of three cell populations. HVCRA

neurons display unary activity sequences, send recurrent collat-

erals within HVC, and project downstream to the next nucleus

(RA) in the motor pathway. Inhibitory interneurons fire tonically

throughout the song motif and project within HVC. HVCX cells

send outputs to a distinct anterior forebrain pathway that is not

necessary for song production in adults.

Our simple network model consists of excitatory neurons with

modifiable recurrent synapses (Figure 1A). These represent the

HVCRA neurons. The model includes an inhibitory unit that

sums the activity of all excitatory neurons and in turn provides

equal global inhibition to all of them. This global inhibitory unit

represents the pool of inhibitory interneurons in HVC. We do

not include HVCX neurons in our model.

The excitatory neurons receive external inputs with temporally

random activations (no sequential structure or temporal correla-

tions), except where specifically noted. Initially, the recurrent

weights between excitatory neurons are all assumed to be small

and random. All weights between the excitatory neurons

undergo STDP with an antisymmetric learning window, schema-

tized in Figure 1B. Crucially for the success of sequence forma-

tion, in addition to STDP we impose a nonlinear competition

across synapses at each neuron, by imposing heterosynaptic

long-term depression (hLTD) when the weights at a neuron

hit a limit (Figure 1C). The rule is summarized by the summed-

weight limit rule.

Neuron

Sequences from STDP and Heterosynaptic Competition
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