
J. Parallel Distrib. Comput. 96 (2016) 38–44

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Vertex-disjoint paths in DCell networks
Xi Wang a, Jianxi Fan a,∗, Cheng-Kuan Lin a, Xiaohua Jia b

a School of Computer Science and Technology, Soochow University, Suzhou 215006, China
b Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

h i g h l i g h t s

• Construct n+ k− 1 vertex-disjoint paths between every two distinct vertices of the DCell. Their longest length is not greater than 2k+1
+ 3, where it

was proved that the diameter of a k-dimensional DCell, DCellk, has an upper bound 2k+1
− 1.

• Propose an O(k2k) algorithm for finding vertex-disjoint paths between every two distinct vertices in DCell.
• Give the simulation result of the maximal length of disjoint paths gotten by our algorithm.

a r t i c l e i n f o

Article history:
Received 13 August 2014
Received in revised form
28 March 2016
Accepted 1 May 2016
Available online 6 May 2016

Keywords:
Disjoint paths
DCell networks
Data center networks
Algorithm

a b s t r a c t

TheDCell network is suitable formassively scalable data centerswith high network capacity by only using
commodity switches. In this paper,we construct n+k−1 vertex-disjoint paths between every twodistinct
vertices of the DCell network. Their longest length is not greater than 2k+1

+ 3, where it was proved that
the diameter of a k-dimensional DCell, DCellk, has an upper bound 2k+1

− 1. Furthermore, we propose an
O(k2k) algorithm for finding vertex-disjoint paths between every two distinct vertices in DCell networks.
Finally, we give the simulation result of the maximal length of disjoint paths gotten by our algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data centers are critical to the business of companies such
as Amazon, Google, Facebook, and Microsoft, which have already
owned data centers with more than hundreds of thousands of
servers. Their operations are important to offer both many on-
line applications such as web search, on-line gaming, email,
cloud storage, and infrastructure services such as GFS [10], Map-
reduce [5], and Dryad [16]. In particular, a data center network
plays important roles in the data center, which is composed of
servers, switches, and links connecting servers and switches.

The topologies of data center networks can be modeled using
graphs. In research on various properties of data center networks,
switches can be regarded as transparent network devices [13]. As
a result, a data center network can generally be represented by a
simple graph G = (V (G), E(G)), where V (G) represents the vertex
set and E(G) represents the edge set, each vertex represents a
server, and each edge represents a link between servers. In this

∗ Corresponding author.
E-mail address: jxfan@suda.edu.cn (J. Fan).

paper, all graphs are simple and undirected, we use graphs and
data center networks interchangeably. Recently, graph theory is
a greatly powerful mathematical tool for designing and analyzing
topological properties of data center networks such as routing
[13,12,18,19], fault tolerance [13,12], Hamiltonian properties
[9,25], and robustness analyzing [3,2].

A path in G is a sequence of vertices, P = ⟨u0, u1, . . . , uj, . . . ,
un−1, un⟩, in which no vertices are repeated and uj, uj+1 are
adjacent for any integer 0 ≤ j < n. G is connected when at least
one path exists between any two vertices. We use dist(G, x, y) to
denote the distance between two vertices x and y of the graph G.
The diameter of G is defined as d(G) = max{dist(G, x, y)|x, y ∈
V (G), x ≠ y}. The connectivity of G is defined as the minimum
number of vertices whose removal renders it disconnected or
trivial. Let κ(G) (κ for short) be the connectivity of G. For any pair
of vertices in G, say u and v, by the Menger’s theorem [4], we can
find κ vertex-disjoint paths (disjoint paths for short).

In recent years, finding and implementing disjoint paths in data
center networks have become increasingly important in studies of
fault tolerant ability, load balancing, congestion control, andmulti-
path TCP [12,1,11,15,24].We use BCubek to denote a k-dimensional
BCube, Guo et al. gave a O(k2) algorithm of finding the k + 1

http://dx.doi.org/10.1016/j.jpdc.2016.05.001
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.05.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.001&domain=pdf
mailto:jxfan@suda.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2016.05.001


X. Wang et al. / J. Parallel Distrib. Comput. 96 (2016) 38–44 39

disjoint paths between any two vertices in BCubek, and they have
proved that the longest length of these disjoint paths is k+ 1 [12].
Jayaram et al. provided a new disjoint paths forwarding solution
over arbitrary data center networks [23]. Hussam et al. proposed a
custom routing protocol using disjoint paths in CamCube [20].

DCell [13] has been proposed as a novel data center network.
It has many desirable properties including exponential scalability,
high network capacity, small diameter, and high fault tolerance.
DCell only requires mini-switches and can support an efficient
and scalable routing algorithm [13]. We use DCellk to denote a k-
dimensional DCell built with n port switches. Some basic prop-
erties DCellk, such as connectivity [13,22], restricted connectivity
[27], diameter [13,19], symmetry [19], broadcasting [13], and
Hamiltonian properties [25], have been studied. Recently, we
proved that a DCellk is one-to-one r-disjoint path coverable for
k ≥ 0 and n ≥ 2 with one exception and proposed an O(tk) al-
gorithm for finding a one-to-one r-disjoint path cover in DCellk,
where tk is the number of servers in DCellk [26]. These measure-
ment results demonstrate that a DCellk has excellent topological
properties.

In particular, Guo et al. [13] proved that the connectivity of
DCellk is n + k − 1. Hence, by Merger’s theorem [4], at least
n + k − 1 disjoint paths exist between any two distinct vertices
u and v in a DCellk. In this paper, we will study the disjoint paths
in DCell networks. Our results are fundamental and essential for
fault tolerance, congestion control, and multi-path TCP in DCell
networks. The major contributions are as follows:

(1) We construct n + k − 1 disjoint paths between every two
distinct vertices in DCellk. Moreover, we prove that length of
the longest path of the n+ k− 1 disjoint paths is no more than
2k+1
+ 3.

(2) We provide an O(k2k) algorithm for finding n+ k− 1 disjoint
paths between every two distinct vertices in DCellk.

The remainder of this paper is organized as follows. Section 2
provides the preliminary knowledge. Section 3 gives an algorithm
to construct n + k − 1 disjoint paths between every two distinct
vertices in DCellk and discusses the lengths of obtained paths. We
make a conclusion in Section 4.

2. Preliminaries

For U ⊆ V (G), we use G[U] = (U, E ′) to denote the subgraph
induced by U in G where E ′ = {(u, v) ∈ E(G)|u, v ∈ U}.
The edge between vertices u and v is denoted by (u, v). If graph
G1 is isomorphic with graph G2, then we write as G1 ∼= G2.
We use V (P) to denote the set of all vertices appearing in P and
E(P) to denote the set of all edges appearing in P . The notation
l(P) refers to the length of the path P . We say P = ∅ if the
path P satisfy l(P) = 0. We also write the path ⟨u1, u2, . . . , uk⟩

as ⟨u1,Q1, ui, ui+1, . . . , uj,Q2, ut , . . . , uk⟩, where Q1 is the path
⟨u1, u2, . . . , ui⟩ and Q2 is the path ⟨uj, uj+1, . . . , ut⟩. Hence, it is
possible to write a path as ⟨u1,Q , u1, u2, . . . , uk⟩ if Q = ∅.

DCell uses recursive defined structure to interconnect servers.
Each server connects to different levels of DCell through multiple
links.We build high-level DCell recursively to formmany low-level
ones. Due to this structure, DCell uses only mini-switches instead
of using high-end switches.

DCell0 is a complete graph on n vertices for any integer n ≥ 2.
We use t0 to denote the number of vertices in DCell0 with t0 = n.
Furthermore, we use tk to denote the number of vertices in DCellk
for any integer kwith k ≥ 1, where tk = tk−1(tk−1+ 1). The vertex
x of DCellk can be labeled by [xk, xk−1, . . . , xi, . . . , x0] with x0 ∈
{0, 1, . . . , n − 1} and xi ∈ {0, 1, . . . , ti−1} for all i = 1, 2, . . . , k.
According to the definition of DCellk [13], we provide a recursive
definition of it.

Definition 1. The DCellk is defined recursively as follows.

(1) DCell0 is a complete graph consisting of n vertices.
(2) For any positive integer k,DCellk is built from tk−1 + 1 disjoint

copies DCellk−1, according to the following steps.
(2.1) We use DCellik−1 to denote the graph obtained by

prefixing the label of each vertex of one copy of DCellk−1
with i for i = 0, 1, . . . , tk−1.

(2.2) For any xk, yk ∈ {0, 1, . . . , tk−1} with xk < yk, vertex
x = [xk, xk−1, . . . , x0] in DCellxkk−1 is adjacent to vertex
y = [yk, yk−1, . . . , y0] in DCellykk−1 if and only if xk =
y0 +

k−1
j=1 (yjtj−1) and yk = x0 +

k−1
j=1 (xjtj−1)+ 1.

For example, when n = 6 and k = 3, vertex [36, 1, 1, 0] in
DCell362 is adjacent to vertex [49, 0, 6, 0] in DCell492 by step (2.2) of
Definition 1.

Fig. 1 shows three examples of DCell. The following definition
describes how to check if a givenpair vertices are adjacent inDCellk.
This definition can be considered as the non-recursive definition of
DCell.

Definition 2. Let x = [xk, xk−1, . . . , x0] and y = [yk, yk−1, . . . , y0].
For all integers k with k ≥ 0, (x, y) is an edge in DCellk if and only
if there is an integer l with

(1) [xk, xk−1, . . . , xl] = [yk, yk−1, . . . , yl],
(2) xl−1 ≠ yl−1, and
(3) xl−1 = y0 +

l−2
j=1(yjtj−1) and yl−1 = x0 +

l−2
j=1(xjtj−1) + 1 if

xl−1 < yl−1.

When both conditions (1) and (2) of Definition 2 hold, we say
that x and y have a leftmost differing element at position l− 1. For
any integer dwith d ≥ 1, when two adjacent vertices x and y have
a leftmost differing element at the position d, we say that y is the
d-neighbor of x or the edge (x, y) is an edge of dimension d. We
use N(x, d) to denote the d-neighbor of x if d ≥ 1. For all integer
i with 0 ≤ i ≤ n, let zi = [xk, . . . , x1, i], we say that zi is a 0-
neighbor of x or the edge (x, zi) is an edge of dimension 0 if zi ≠ x.
Let N(x, 0) = {zi|0 ≤ i ≤ n and zi ≠ x}, we use N(x, 0) to denote
the 0-neighbors of x.

It is clear that DCellk is a regular graph with tk vertices and
(n+k−1)tk

2 edges. Obviously, we have DCellk−1 ∼= DCell0k−1 ∼=
DCell1k−1 ∼= · · · ∼= DCelltk−1k−1 . For any integers n ≥ 2 and k ≥ 1,
edges joining nodes in the same copy ofDCellk−1 are called internal
edges and edges joining nodes in disjoint copies of DCellk−1 are
called external edges. Clearly, each node of DCellik−1 is joined to
exactly one external edge and (n + k − 2)-internal edges for i =
0, 1, . . . , tk−1. Moreover, there exists and only exists one unique
external edge which connects two disjoint copies of DCellk−1.

Some properties of the DCellk (k ≥ 0 and n ≥ 2) have received
considerable attentions in the literature.

Theorem 3 ([13]). The number of servers in DCellk satisfies tk ≥
(n+ 1

2 )
2k
−

1
2 .

Theorem 4 ([13]). The diameter of DCellk is no more than 2k+1
− 1.

3. Main results

In this section, we construct n + k − 1 disjoint paths in DCellk
in Theorem 9. Furthermore, we propose an O(k2k) algorithm for
finding n+ k− 1 disjoint paths in DCellk.

DCellRouting is simple and efficient one-to-one routing algo-
rithm in DCell without failure [13].We use∆(k) to denote 2k+1

−1
and R(x, y,DCellk) to denote a path in DCellRouting between any
two distinct vertices x and y in DCellk.



Download English Version:

https://daneshyari.com/en/article/432266

Download Persian Version:

https://daneshyari.com/article/432266

Daneshyari.com

https://daneshyari.com/en/article/432266
https://daneshyari.com/article/432266
https://daneshyari.com

