
J. Parallel Distrib. Comput. 96 (2016) 106–120

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Pipelined fission for stream programs with dynamic selectivity and
partitioned state
B. Gedik ∗, H.G. Özsema, Ö. Öztürk
Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey

h i g h l i g h t s

• Formalizes the pipelined fission problem for streaming applications.
• Models the throughput of pipelined fission configurations.
• Develops a three-stage heuristic algorithm to quickly locate a close to optimal pipelined fission configuration.
• Experimentally evaluates the solution and demonstrate its efficacy.

a r t i c l e i n f o

Article history:
Received 19 February 2015
Received in revised form
2 December 2015
Accepted 3 May 2016
Available online 14 May 2016

Keywords:
Data stream processing
Auto-parallelization
Pipelining
Fission

a b s t r a c t

There is an ever increasing rate of digital information available in the form of online data streams. Inmany
application domains, high throughput processing of such data is a critical requirement for keeping up
with the soaring input rates. Data stream processing is a computational paradigm that aims at addressing
this challenge by processing data streams in an on-the-fly manner, in contrast to the more traditional
and less efficient store-and-then process approach. In this paper, we study the problem of automatically
parallelizing data stream processing applications in order to improve throughput. The parallelization
is automatic in the sense that stream programs are written sequentially by the application developers
and are parallelized by the system. We adopt the asynchronous data flow model for our work, which
is typical in Data Stream Processing Systems (DSPS), where operators often have dynamic selectivity
and are stateful. We solve the problem of pipelined fission, in which the original sequential program is
parallelized by taking advantage of both pipeline parallelism and data parallelism at the same time. Our
pipelined fission solution supports partitioned stateful data parallelism with dynamic selectivity and is
designed for shared-memorymulti-coremachines.We first develop a cost-based formulation that enables
us to express pipelined fission as an optimization problem. The bruteforce solution of this problem takes
a long time for moderately sized stream programs. Accordingly, we develop a heuristic algorithm that
can quickly, but approximately, solve the pipelined fission problem. We provide an extensive evaluation
studying the performance of our pipelined fission solution, including simulations as well as experiments
with an industrial-strength DSPS. Our results show good scalability for applications that contain sufficient
parallelism, as well as close to optimal performance for the heuristic pipelined fission algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We are experiencing a data deluge due to the ever increasing
rate of digital data produced by various software and hardware
sensors present in our highly instrumented and interconnected
world. This data often arrives in the form of continuous streams.

∗ Corresponding author.
E-mail addresses: bgedik@bilkent.edu.tr (B. Gedik),

habibe.ozsema@bilkent.edu.tr (H.G. Özsema), ozturk@bilkent.edu.tr (Ö. Öztürk).

Examples abound, such as ticker data [41] in financial markets,
call detail records [7] in telecommunications, production line
diagnostics [3] in manufacturing, and vital signals [35] in
healthcare. Accordingly, there is an increasing need to gather and
analyze data streams in near real-time, detect emerging patterns
and outliers, and take automated action. Data stream processing
systems (DSPSs) [37,20,36,1,5] enable carrying out these tasks in
a natural way, by taking data streams through a series of analytic
operators. In contrast to the traditional store-and-processmodel of
datamanagement systems, DSPSs rely on the process-and-forward
model and are designed to provide high throughput and timely
response.

http://dx.doi.org/10.1016/j.jpdc.2016.05.003
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.05.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.003&domain=pdf
mailto:bgedik@bilkent.edu.tr
mailto:habibe.ozsema@bilkent.edu.tr
mailto:ozturk@bilkent.edu.tr
http://dx.doi.org/10.1016/j.jpdc.2016.05.003


B. Gedik et al. / J. Parallel Distrib. Comput. 96 (2016) 106–120 107

Since performance is one of the fundamental motivations for
adopting the stream processing model, optimizing the throughput
of stream processing applications is an important goal of
many DSPSs. In this paper, we study the problem of pipelined
fission, that is automatically finding the best configuration of
combined pipeline and data parallelism in order to optimize
application throughput. Pipeline parallelism naturally occurs in
stream processing applications [39]. As one of the stages is
processing a data item, the previous stage can concurrently
process the next data item in line. Data parallelization, aka.
fission, involves replicating a stage and concurrently processing
different data items using these replicas. Typically, data parallelism
opportunities in streaming applications need to be discovered (to
ensure safe parallelization) and require runtimemechanisms, such
as splitting and ordering, to enforce sequential semantics [33,15].

Our goal in this paper is to determine how to distribute
processing resources among the data and pipeline parallel aspects
within the stream program, in order to best optimize the
throughput. While pipeline parallelism is very easy to take
advantage of, the amount of speed-up that can be obtained is
limited by the pipeline depth. On the other hand, data parallelism,
when applicable, can be used to achieve higher levels of scalability.
Yet, data parallelism has limitations as well. First, the mechanisms
used to establish sequential semantics (e.g., ordering) have
overheads that increase with the number of replicas used. Second,
and more importantly, since data parallelism is applied to a subset
of operators within the chain topology, the performance is still
limited by other operators for which data parallelism cannot be
applied (e.g., because they are arbitrarily stateful). The last point
further motivates the importance of pipelined fission, that is the
need for performing combined pipeline and data parallelism.

The setting we consider in this paper is multi-core shared-
memory machines. We focus on streaming applications that pos-
sess a chain topology, where multiple stages are organized into a
series, each stage consuming data from the stage before and feed-
ing data into the stage after. Each stage can be a primitive operator,
which is an atomic unit, or a composite [22] operator, which can
contain a more complex sub-topology within. In the rest of the pa-
per, we will simply use the term operator to refer to a stage. The
pipeline and data parallelism we apply are all at the level of these
operators.

Our work is applicable to and is designed for DSPSs that have
the following properties:

• Dynamic selectivity: If the number of input data items con-
sumed and/or the number of output data items produced by
an operator are not fixed and may change depending on the
contents of the input data, the operator is said to have dynamic
selectivity. Operators with dynamic selectivity are prevalent in
data-intensive streaming applications. Examples of such oper-
ators include data dependent filters, joins, and aggregations.
• Backpressure: When a streaming operator is unable to con-

sume the input data items as fast as they are being produced, a
bottleneck is formed. In a system with backpressure, this even-
tually results in an internal buffer to fill up, and thus an up-
stream operator blockswhile trying to submit a data item to the
full buffer. This is called backpressure, and it recursively prop-
agates up to the source operators.
• Partitioned processing: A stream thatmultiplexes several sub-

streams,where each sub-stream is identified by its unique value
for the partitioning key, is called a partitioned stream. An opera-
tor that independently processes individual sub-streamswithin
a partitioned stream is called a partitioned operator. Partitioned
operators could be stateful, in which case they maintain in-
dependent state for each sub-stream. DSPSs that support par-
titioned processing can apply fission for partitioned stateful
operators—an important class of streaming operators [34,4].

There are several challenges in solving the pipelined fission
problemwe have outlined. First, we need to formally definewhat a
valid parallelization configuration is with respect to the execution
model used by the DSPS. This involves defining the restrictions
on the mapping between threads and parallel segments of the
application. Second,weneed tomodel the throughput as a function
of the pipelined fission configuration, so as to compare different
pipelined fission alternatives among each other. Finally, even for a
small number of operators, processor cores, and threads, there are
combinatorially many valid pipelined fission configurations. It is
important to be able to quickly locate a configuration that provides
close to optimal throughput. There are two strong motivations
for this. The first is to have a fast edit–debug cycle for streaming
applications. The second is to have low overhead for dynamic
pipelined fission, that is being able to update the parallelization
configuration at run-time. Note that, the optimal pipelined fission
configuration depends on the operator costs and selectivities,
which are often data dependent, motivating dynamic pipelined
fission. In this paper, our focus is on solving the pipelined fission
problem in a reasonable time, with high accuracy with respect to
throughput.

Our solution involves three components. First, we define
valid pipelined fission configurations based on application of
fusion and fission on operators. Fusion is a technique used for
minimizing scheduling overheads and executing stream programs
in a streamlined manner [25,13]. In particular, series of operators
that form a pipeline are fused and executed by a dedicated thread,
where buffers are placed between successive pipelines. On the
other hand, using fission, series of pipelines that form a parallel
region are replicated to achieve data parallelism.

Second, we model concepts such as operator compatibility
(used to define parallel regions), backpressure (key factor in defin-
ing throughput), and system overheads like the thread switching
and replication costs (factors impacting the effectiveness of paral-
lelization), and use these to derive a formula for the throughput.

Last, and most importantly, we develop a heuristic algorithm
to quickly locate a pipelined fission configuration that provides
close to optimal performance. The algorithm relies on three main
ideas: The first is to form regions based on the longest compatible
sequence principle, where compatible means that a formed region
carries properties that make it amenable to data parallelism as
a whole. The second is to divide regions into pipelines using a
greedy bottleneck resolving procedure. This procedure performs
iterative pipelining, using a variable utilization-based upper bound
as the stopping condition. The third is another greedy step, which
resolves the remaining bottlenecks by increasing the number of
replicas of a region.

We evaluate the effectiveness of our solution based on exten-
sive analytic experimentation.We also use IBM’s SPL language and
its runtime system to perform an empirical evaluation. Our SPL-
based evaluation shows that we can quickly locate a pipelined fis-
sion configuration that is within 5%–10% of the optimal using our
heuristic algorithm.

In summary, we make the following contributions:

• We formalize the pipelined fission problem for streaming appli-
cations that are organized as a series of stages and can poten-
tially exhibit dynamic selectivity, backpressure, and partitioned
processing.
• We model the throughput of pipelined fission configurations

and cast the problem of locating the best configuration as a
combinatorial optimization one.
• We develop a three-stage heuristic algorithm to quickly locate

a close to optimal pipelined fission configuration and evaluate
its effectiveness using analytical and empirical experiments.



Download English Version:

https://daneshyari.com/en/article/432270

Download Persian Version:

https://daneshyari.com/article/432270

Daneshyari.com

https://daneshyari.com/en/article/432270
https://daneshyari.com/article/432270
https://daneshyari.com

