
J. Parallel Distrib. Comput. 96 (2016) 163–171

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Prediction mechanisms for monitoring state of cloud resources using
Markov chain model
Mustafa M. Al-Sayed a,∗, Sherif Khattab b, Fatma A. Omara b

a Department of Computer Science, Faculty of Computers and Information, Minia University, Egypt
b Department of Computer Science, Faculty of Computers and Information, Cairo University, Egypt

a r t i c l e i n f o

Article history:
Received 10 March 2015
Received in revised form
3 April 2016
Accepted 21 April 2016
Available online 28 April 2016

Keywords:
Markov chains
Cloud computing
Resource monitoring

a b s t r a c t

Cloud computing allows for sharing computing resources, such as CPU, application platforms, and
services. Monitoring these resources would benefit from an accurate prediction model that significantly
reduces the network overhead caused by unnecessary push and pull messages. However, accurate
prediction of the computing resources is considered hard due to the dynamic nature of cloud computing.
In this paper, two monitoring mechanisms have been developed: the first is based on a Continuous Time
Markov Chain (CTMC) model and the second is based on a Discrete Time Markov Chain (DTMC) model. It
is found that The CTMC-based mechanism outperformed the DTMC-based mechanism. Also, the CTMC-
based mechanism outperformed the Grid Resource Information Retrieval (GRIR) mechanism, which does
not employ prediction, and a prediction-basedmechanism, which usesMarkov Chains to predict the time
interval of monitoring mobile grid resources, in monitoring cloud resources.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, distributed computing systems have enabled a high
level of resource sharing. Types of these systems include clusters,
grids, and cloud computing, which allow the users to access
large amounts of computing power in a fully virtualized manner,
through resource pooling and a single system view. These systems
deliver resources as a utility. Cloud computing provides services
to the users through a ‘‘pay-as-you-go’’ manner with automatic
elasticity. Therefore, accurate monitoring of resources consumed
by the users has a great effect on accounting, billing, and system
performance [6,16,13].

Monitoring resources in cloud environments is considered the
key tool for controlling and managing hardware and software in-
frastructures. Monitoring provides information and Key Perfor-
mance Indicators (KPI) for both platforms and applications. Also,
SLA violations can be detected by continuous monitoring. There-
fore, monitoring resources in cloud environments is an important
task for both cloud Providers and cloud Consumers [4].

The monitoring process is used to collect the resources
information (e.g., CPU load, memory usage, network bandwidth),

∗ Corresponding author.
E-mail addresses:mostafamcs@gmail.com (M.M. Al-Sayed),

s.khattab@fci-cu.edu.eg (S. Khattab), f.omara@fci-cu.edu.eg (F.A. Omara).

which help for job scheduling, load balancing, event prediction,
fault detection and recovery tasks. Because the inaccurate
information would affect the performance of these tasks, the
monitoring process has to ensure the consistent state. This
monitoring scheme needs to adapt to the dynamic nature of cloud
computing that stems from dynamic user and system loads, and
elastic resource provisioning [5,23].

A monitored resource (termed the producer in this paper)
sends its monitored state to one or more master nodes (termed
the consumer in this paper) over the network. The producer
may proactively send its state to the consumer or wait until the
consumer requests a state update. The former case follows a push
model, whereas the latter is a pull model.

Monitoring cloud resources would benefit from an accurate
prediction model that significantly reduces the network overhead
caused by unnecessary push and pull network messages. For
instance, using periodic monitoring updates with a fixed interval
may cause the monitored resource to push (send) unnecessary
network messages containing the same information. Fixed-period
monitoring may alternatively cause the master node to send
unnecessary pulls (requests). However, if the Consumer correctly
predicts, up to a predefined error tolerance degree (ETD), a
monitored value, the Producer would not need to send this value.
However, accurate prediction is hard due to the dynamic nature of
system load and resource provisioning, among other factors.

In this paper, we have developed two resource monitoring
mechanisms for cloud computing that are based on Markov

http://dx.doi.org/10.1016/j.jpdc.2016.04.012
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.04.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.012&domain=pdf
mailto:mostafamcs@gmail.com
mailto:s.khattab@fci-cu.edu.eg
mailto:f.omara@fci-cu.edu.eg
http://dx.doi.org/10.1016/j.jpdc.2016.04.012


164 M.M. Al-Sayed et al. / J. Parallel Distrib. Comput. 96 (2016) 163–171

Chains. The first mechanism uses Continuous-TimeMarkov Chains
(CTMC), whereas the second uses Discrete-Time Markov Chains
(DTMC). Both mechanisms use pushing of resource state (updates)
when the difference between the predicted and actual values
exceeds the ETD. These updates are used to tune the prediction
model at the Consumer. In both mechanisms, a K -state Markov
model is developed based on training data.

The used dataset to evaluate ourmechanisms has been released
by Google. It contains measurement data of 29 days that were
collected from a computing Cluster in May 2011 [28]. Half of
these data was used for training. Furthermore, we have compared
the accuracy and the network overhead of our mechanisms with
the push-based mechanism Grid Resource Information Retrieval
(GRIR) [7] and a prediction-based mechanism [23], which uses
Markov Chain Model (MCM) to predict the time interval of
monitoring mobile resources (for brevity, we will call it MTI
mechanism), after deploying them to monitor cloud resources.

The implementation results showed that the CTMC-based
mechanism achieved better performance than that was achieved
by the DTMC-basedmechanism. Also, the CTMC-basedmechanism
achieved better performance than that was achieved by the GRIR
and the MTI mechanisms.

This paper is organized as follows: background about Markov
chains and related works are presented in Sections 2 and 3,
respectively. The proposedmechanisms are presented in Section 4.
Section 5 describes the evaluation of our proposed mechanisms.
Finally, the conclusion and future work are presented in Section 6.

2. Markov chains

The artificial intelligence community has adopted stochastic
technologies for machine learning. Bayes’ rule is the basis for these
technologies where Bayesian approaches can expect future events
from prior events. Markov Chain Model (MCM) is one of these
technologies. In MCM, the probability of an event occurrence at
any time is a function of the probabilities of the occurred events
at previous time periods [20].

Markov chains may be discrete-time or continuous-time. In
the following subsections, we give a brief introduction about the
key main property of Discrete-Time Markov Chain (DTMC), and
Continuous-Time Markov Chain (CTMC).

2.1. Discrete-Time Markov Chain (DTMC)

Markov property in DTMCs implies that [10,21]:

P[Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0]
= P[Xn+1 = j|Xn = i] = Pij

where Pij is the one-step transition probability from state i to
state j at a specific interval. These transition probabilities could be
expressed in a K × K transition matrix, where K is the number of
states [15].

Assuming a transition matrix with an initial probability
distribution vector π , the probability that the chain is in a state
i after n steps is the ith entry in the vector πn [14].

Although matrix self-multiplication can be computed in
O(log(n)) instead ofO(n), suchperformance gainwould be tangible
for large values of n. The value of n in our work was small (∼40),
which did not warrant the use of optimized multiplication.

2.2. Continuous-Time Markov Chain (CTMC)

According to the CTMC, the state transitions happen at any pe-
riod of time [3]. CTMCs move from one state to another accord-
ing to a DTMCmodel. The time spent in each state is exponentially

distributed with parameter λ. The CTMC model is described by a
transition matrix T = [Pij], as in DTMC model, together with a set
of time rates {λij : i, j ∈ S}, where S is the state space that has been
expressed in a transition rate matrix R = [λij]. Every time state i is
visited, the chain spends there, on average, E(ti) = 1/λi time units
before moving on [2,15].

3. Related works

The existing monitoring systems are based on three basic
models: Push, Pull, and Hybrid. In Push model, Producers push
the updated information to the Consumer under some trigger
conditions based on a Service Level Agreement (SLA). In Pullmodel,
Consumer requests resources information from Producers when it
needs. The Hybrid model allows switching between Push and Pull
models according to a specific threshold [7,18].

The monitoring systems of distributed systems can also be
classified into three types based on these models: (1) Push-
based monitoring systems, such as Nagios Service Check Adaptor
(NSCA) [12], PCMONS [9], and Lattice [8]; (2) Pull-basedmonitoring
systems, such as Nagios Remote Plugin Executor (NRPE) [11] and
Hyperic HQ [17]; and (3) Hybrid systems, such as Ganglia [26] and
Monalisa [19].

According to [1], the monitoring mechanisms based on the
Push model are considered the most suitable for large distributed
systems, where the update messages are pushed to the Consumer
based on the Producer state. This rescues the network and the
Consumer from useless messages. On the other hand, in the Pull
model, each pull operation is offset by another push operation. This
doubles the consumed bandwidth of the network and the load on
the Consumer.

Hence, our proposed monitoring mechanisms are based on
the Push model, where the Producer pushes its updates to the
Consumer when the difference between the actual measurement
and the predicted state values, using aMarkov ChainModel (MCM),
exceeds a certain Error Tolerance Degree (ETD) limit, which is
defined according to the users’ requirements.

In an attempt to minimize unnecessary and useless update
messages and at the same timemaximize the consistency between
the Producer and the Consumer, Chung andChang [7] has proposed
a resource monitoring mechanism for Grid computing called Grid
Resource Information Retrieval (GRIR). GRIR improves on the Push
model. The authors there have examined a set of data delivery
protocols: the Offset-Sensitive Mechanism (OSM), Time-Sensitive
Mechanism (TSM), and hybrid Announcing with Change and
Time Consideration (ACTC). They found that the hybrid protocol
outperforms other protocols, because it is based on tuning the
updating time interval and the threshold dynamically when any
change occurs.

A comparative study has been conducted between the GRIR
(based on the ACTC protocol), and the monitoring mechanism of
Ganglia system. According to the comparative results, it is found
that the GRIR mechanism achieved a high quality and a small
degree of communication overhead [1]. So, the GRIR mechanism
will be considered as a benchmark to evaluate the performance of
our proposed mechanisms.

MCM has been widely used to model sequential events, such as
natural languages, human speech, and animal behavior. Also, the
Markovian property (i.e., the conditional distribution of the next
state is based only on the current state) satisfies the memory less
property, which would be beneficial during continuous monitor-
ing. On the other hand, it has been used, in a limited range, tomon-
itor resources in large distributed environments to overcome the
high level of network overhead by the pull-based systems [23,3,2].
Examples of these limited attempts, which are the base of thework
in this paper, are discussed in the following paragraphs.



Download English Version:

https://daneshyari.com/en/article/432274

Download Persian Version:

https://daneshyari.com/article/432274

Daneshyari.com

https://daneshyari.com/en/article/432274
https://daneshyari.com/article/432274
https://daneshyari.com

