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e We present an algorithm which solves this problem in less than 0.5n + 9 steps.
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In this paper we analyze the matrix transpose problem for 2- and 3-dimensional mesh architectures
with row and column buses. First we consider the 2-dimensional problem, and we give a lower bound
of approximately 0.45n for the number of steps required by any matrix transpose algorithm onann x n
mesh with buses. Next we present an algorithm which solves this problem in less than 0.5n + 9 steps.
Finally, we prove that the given lower bound remains valid for the 3-dimensional case as well.
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1. Introduction

The rapidly increasing computational demands of the applied
sciences pushed the computer systems progressively towards the
higher computational capacity. In the same time they required
more effective algorithms. Therefore, recently high performance
computing is in the focus of computer science. To make computers
more efficient, developments were needed both on the fields
of hardware and software. Hardware developments resulted in
multicore processors and connected computers with different
architectures, while the algorithms became more sophisticated
step by step and they have been analyzed deeper than ever before.
A good architecture or a more efficient algorithm may decrease the
processing time strongly in a parallel computational environment.

On the hardware side the effectiveness of any parallel
computation effort vigorously depends on how fast we can send
data from a source processor to a destination one. Therefore
different architectures were developed in the last two decades.
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Hypercubes, tori and meshes are the architectures that have been
intensively studied. See e.g. [8,14,17,22].

Routing, sorting, merging, and matrix transpose are the
problems that were investigated already in the early ages of
parallel computation (see e.g. [2,11,12,19]). These problems
are among the basic ones, that often appear in numerical
computations. For example matrix transpose is one of the basic
operations in linear algebra. The speed of such computations can be
critical in some real time practical applications, like digital signal
processing, image processing, radar systems, etc. (see [23,3]). To
exploit the increased computational capacity on the software
side parallel algorithms have been developed, so in the last
decade parallel processing has been further improved by leaps and
bounds. All of the investigated algorithms were accommodated to
a given architecture. The effectiveness of certain algorithms were
investigated extensively, see e.g. [4,6,9,13,18,21,20].

The effectiveness of a parallel computation effort strongly
depends on how fast we can send data from a source processor
to a destination one. Meshes are the architectures that are flexible,
the processors can be connected in different ways, and they are
suitable to implement different algorithms in an efficient way.
Therefore among the different architectures the most extensively
studied ones are the mesh architectures. In the simplest, one
dimensional (1D) case a mesh is a linear array where the elements
are the processors and each processor is connected by a full duplex
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Fig. 1. Some mesh architectures.

line with its neighbors. In higher dimensions (2D, 3D) processors
form an array, and they are connected by communication links.
Fig. 1 shows some mesh architectures.

Execution of any algorithm is performed in steps. In one step
two connected processors can change data. Normally, only the
connected processors can communicate with each other. There
are different communication modes which influence the speed of
data transfer. MIMD, SPMD, SIMD and the Weak SIMD are some
examples for communication. (More details see in [7,15,16]).

In this paper we suppose MIMD communication among the
processors, i.e. processors choose their communication directions
independently, and they can communicate with all their neighbors
in one step.

The efficiency of an algorithm is measured by the number of
steps needed to fulfill the given task. While routing from a source
processor to a destination one, data may pile up at a processor. This
may cause a bottleneck effect if we do not have enough memory for
storing these data. In this paper we assume that all processors have
sufficiently large memory to store the waiting data - sometimes
called as messages or items - in separate queues.

If the processors can communicate with only their neighbors,
then sending data from a processor to a far one may take
many steps. There are different ways to avoid this situation.
In [24] the so-called wormhole switched meshes are considered.
In case of wormhole routing the data transfer has two steps.
In the first one a circuit is established between the source and
destination processors facilitating a quick data transfer between
the nodes, and in the second step packets are sent over different
paths independently from each other. The advantage of this
communication lies in the first step: although it takes more time
than the second one, it builds up a direct connection between the
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Fig. 2. 1D mesh with bus.

processors, and the second step allows to send packages between
the processors saving much more time.

To speed up the communication between two far processors, it
is possible to use buses. Buses can be used in 1D meshes (see Fig. 2.)
and for 2D meshes as well. We show different bus-configurations
in Fig. 3. Row and column buses were used in [1]. If we use a bus
then the processors connected to the bus can communicate not
only with their neighbors but also with the ones that are connected
to the same bus. In one step only one processor can send data to a
bus and one of the others can accept it in the same step. In case of
2D meshes we can use row and column buses, and all processors
in the same row or column are connected to one bus. To a 2D mesh
which has both, row and column buses we will refer as 2RCB-mesh.

Depending on the considered problem we need to move
the data in different ways. In case of the permutation routing
problem each processor should send k(> 1) messages to the same
processor. We call this the k — k permutation routing problem. We
say that the problem is solved, if each message has arrived at its
destination. Such problems were considered in [1].

A special permutation routing problem is the matrix transpose
problem (MTP) on a 2D mesh. In this case a message originally
contained by the processor (i, j) should be routed to the processor
(j, i) foralli, jwhere 1 < i, j < n. We will call those two processors
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