
J. Parallel Distrib. Comput. 89 (2016) 13–24

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimizing memory transactions for large-scale programs
Fernando Miguel Carvalho a,b,∗, João Cachopo a

a INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal
b ADEETC, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, Portugal

h i g h l i g h t s

• A new technique of adaptive object
metadata (AOM) that eliminates the
extra STM metadata.

• AOM with LICM (lightweight iden-
tification of captured memory) pro-
vide a fast path for non-contended
objects.

• Results that show performance with
an STM that rivals a fine-grained lock
in a large-scale benchmark.

• Integrated in Deuce STM full sup-
port for in-place metadata that is re-
quired by LICM and AOM.

• Innovative adaptation of Deuce STM:
maintains original API, and enhances
any existing STM.

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Article history:
Received 8 November 2013
Received in revised form
20 February 2015
Accepted 3 December 2015
Available online 14 December 2015

Keywords:
Software Transactional Memory
Runtime optimizations
Concurrent programming

a b s t r a c t

Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify
concurrent programming, current STM implementations incur significant overheads that render them
impractical for many real-sized programs. The key insight of this work is that we do not need to use the
same costly barriers for all the memorymanaged by a real-sized application, if only a small fraction of the
memory is under contention—lightweight barriers may be used in this case. In this work, we propose a
new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to
access objects that are not under contention.We show that this approach is able tomake the performance
of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging
benchmarks.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The idea of providing hardware support for transactions was
firstly introduced byKnight [18] to check the correctness of parallel

∗ Corresponding author at: INESC-ID/Instituto Superior Técnico, University of
Lisbon, Portugal.

E-mail addresses:mcarvalho@cc.isel.ipl.pt (F.M. Carvalho),
joao.cachopo@ist.utl.pt (J. Cachopo).

executions of Lisp programs. Later, Herlihy andMoss [16] extended
the concept to the notion of Transactional Memory (TM) and then
Shavit and Touitou [26] proposed a software realization of the
same idea, called Software Transactional Memory (STM), however,
with a different interface from the original TM proposal.

One of the key selling points of TM is that it simplifies the de-
velopment of concurrent programs, because programmers do not
have to enforce isolation through some concurrency control mech-
anism, but instead, they just have to saywhich groups of operations
should be executed atomically. To that end, Harris and Fraser [13]

http://dx.doi.org/10.1016/j.jpdc.2015.12.001
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.12.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.12.001&domain=pdf
mailto:mcarvalho@cc.isel.ipl.pt
mailto:joao.cachopo@ist.utl.pt
http://dx.doi.org/10.1016/j.jpdc.2015.12.001


14 F.M. Carvalho, J. Cachopo / J. Parallel Distrib. Comput. 89 (2016) 13–24

proposed the use of an atomic construct to provide a style of con-
ditional critical region [17] in the Java programming language. Al-
ternatively, and following the same approach, the Deuce STM [20]
provides a simple API based on an @Atomic annotation to mark
methods that must have a transactional behavior.

Unfortunately, one of the consequences ofmaking an STM com-
pletely transparent to theprogrammer is that itmay add large over-
heads to the program. A major source of overheads in STM-based
programs is the use of STM barriers whenever a memory location
is accessed within a transaction. These barriers are responsible for
keeping track of what is done inside a transaction (at a minimum,
STM barriers need to keep track of what is read and written), so
that the STM runtime is able to ensure the intended transactional
semantics.

This problem was pointed out by some authors (e.g., [6,22]),
who raised questions about the practical applicability of STMs to
large-scale programs. In fact, whereas STMs have shownpromising
results when applied tomicro-benchmarks, they typically perform
worse than coarse-grained lock-based approaches in larger
benchmarks with a large number of shared objects.

Yet, we claim that it is possible to reduce substantially the STM-
induced overheads for a large-scale program if we assume that
the amount of memory under contention – that is, memory being
concurrently accessed both for read and for write – is only a small
fraction of the total amount of memory accessed by that program.

The key idea is that for non-contended memory (that is,
memory not being concurrently accessed both for read and for
write) we can avoid the full-blown STM barriers, which should
be used only for accessing (the relatively rare) memory under
contention. Instead, for the frequent non-contended memory
accesses we use lightweight barriers that access directly the target
memory, thereby significantly reducing the overheads imposed
by the STM. Our approach combines two orthogonal techniques –
lightweight identification of captured memory (LICM) and adaptive
object metadata (AOM) – to reduce the overheads of accessing
objects that are not under contention.

LICM allows the automatic identification of transaction-local
objects at runtime, for which no STM barriers are needed, but its
use does not eliminate all of the excessive overheads caused by
an STM in many large-scale benchmarks. Yet, it complements well
the second technique that we propose in this paper. AOM is an
optimization technique for multi-versioning STMs, based on the
JVSTM [10] general design, that is adaptive because the structure of
themetadata used for each transactional object changes over time,
depending on how the object is accessed.

By combining AOM with LICM, we are able to outperform the
coarse-grained (and compete with the best fine-grained) lock-
based approaches in some of the more challenging benchmarks,
while retaining ease of programming.

In Section 2, we present some motivation for this work and
present an overview of our approach. Then, in Section 3 we intro-
duce the key aspects of the JVSTM that are relevant to understand
our proposal. In Section 4,wedescribe in detail theAOMdesign and
discuss the correctness of its operations. In Section 5,wepresent an
experimental evaluation for a variety of benchmarks. In Section 6,
we discuss related work on efficient support for STMs. Finally, in
Section 7 we conclude and discuss some future work.

2. Motivation and solution overview

Despite the promising results of STMs for micro-benchmarks,
when we apply STMs to larger benchmarks, such as STM-
Bench7 [12] or Vacation [2], they typically performworse than the
single-threaded sequential version of the samebenchmark. This ef-
fect was observed by Fernandes and Cachopo [10], who show that
using Deucewith either TL2 STM [8] or LSA STM [25] in STMBench7

achieves a throughput up to 100 times lower than using a coarse-
grained lock. Interestingly, however, they also show that by man-
ually instrumenting STMBench7 with the JVSTM (rather than with
Deuce), it was possible to get better performance than with the
medium-grained locks, which suggests that, after all, it is possible
to get good performance from STMs in large-scale applications.

The large gap in performance observed in that work may be
attributed to the difference in the STMs used, to the amount of
barriers that are introduced into the benchmark by each approach
(Deuce vs manual),1 or, most probably, to a combination of both.

To help us pinpoint the causes for the differences observed
by Fernandes and Cachopo [10], we ran STMBench7 with three
synchronization approaches: (1) using Deuce to instrument all of
the code and executing it using 3 different STMs: TL2, LSA, and
JVSTM2; (2) using the coarse-grained and medium-grained lock-
based synchronization of STMBench7; and (3) using an STMBench7
that was manually instrumented to use the JVSTM.

In Fig. 1, we show the throughput of the benchmark for each
of the synchronization approaches, when the number of threads
varies from 1 to 48 (in Section 5 we describe the details of the
experimental platform). The results show that for this workload
the JVSTM performs better than the other STMs (even when all the
instrumentation is made by Deuce), but the more telling aspect
is the huge gap in performance between using the JVSTM with
Deuce or manually: Whereas when using the JVSTM with Deuce
the throughput never gets above the sequential non-instrumented
execution, in the manual case we get a speedup of 3 times,
outperforming even the medium-grained lock-based approach.

Given that the JVSTM used in both cases is exactly the
same, this difference must result from the over-instrumentation
made by Deuce. This over-instrumentation has two consequences:
(1) it adds more STM barriers to the execution of the benchmark;
and (2) it adds to each object extra metadata, which needs to be
traversed when accessing those objects. Both affect performance
negatively.

Our goal is to suppress STM barriers and avoid the metadata
indirections in situations where they are not really necessary—
that is, when accessing objects that are not under contention.
By integrating our solution in Deuce we expect to be able to
achieve results similar to those obtained with the manual use
of the JVSTM, albeit without the intervention of the programmer
(thereby, making the STM easier to use).

The first part of our solution is based on the use of LICM, which
we introduced in [5] and further enhanced in [4]. LICM provides
a new lightweight runtime technique to elide STM Barriers when
accessing captured memory—that is, memory allocated inside a
transaction that cannot escape (i.e., is captured by) its allocating
transaction, as defined by Dragojevic et al. [9]. Captured memory
corresponds to newly allocated objects that did not exist before
the beginning of their allocating transaction and that, therefore, are
heldwithin the transaction until its successful commit. In our LICM
work, wewere concernedwith how to perform the runtime capture
analysis efficiently. In our solution, we label new objects with
a fingerprint that uniquely identifies their creating transaction,
and then check if the accessing transaction corresponds to that
fingerprint, in which case we avoid the barriers. This check is
simply an identity comparison between the fingerprint of the
accessing transaction and the fingerprint of the accessed object,
and, thus, a very lightweight operation. The idea of the fingerprint

1 When using Deuce, all classes are automatically instrumented, whereas when
manually using the JVSTM only the classes of the effectively shared objects are
instrumented.
2 For this purpose we integrated in Deuce the lock-free version of the JVSTM,

which was not available yet.



Download English Version:

https://daneshyari.com/en/article/432287

Download Persian Version:

https://daneshyari.com/article/432287

Daneshyari.com

https://daneshyari.com/en/article/432287
https://daneshyari.com/article/432287
https://daneshyari.com

