J. Parallel Distrib. Comput. 76 (2015) 3-15

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A model-driven blocking strategy for load balanced sparse
matrix-vector multiplication on GPUs

CrossMark

Arash Ashari*, Naser Sedaghati, John Eisenlohr, P. Sadayappan

Department of Computer Science and Engineering, The Ohio State University, United States

HIGHLIGHTS

A novel blocking strategy that reduces thread divergence and improves load balance.
Enhanced performance modeling for selection of a key blocking parameter.

Comprehensive experimental evaluation and integrating with a real system; PETSc.

]
L[]
e An efficient auto-tuning technique to optimize performance.
[]
[]

A multi-GPU algorithm for SpMV with experimental evaluation.

ARTICLE INFO

ABSTRACT

Article history:

Received 28 February 2014
Received in revised form

31 October 2014

Accepted 4 November 2014
Available online 12 November 2014

Keywords:
SpMV
GPU
CUDA

Sparse Matrix-Vector multiplication (SpMV) is one of the key operations in linear algebra. Overcoming
thread divergence, load imbalance and un-coalesced and indirect memory access due to sparsity and
irregularity are challenges to optimizing SpMV on GPUs.

In this paper we present a new Blocked Row-Column (BRC) storage format with a two-dimensional
blocking mechanism that addresses these challenges effectively. It reduces thread divergence by
reordering and blocking rows of the input matrix with nearly equal number of non-zero elements onto
the same execution units (i.e., warps). BRC improves load balance by partitioning rows into blocks with
a constant number of non-zeros such that different warps perform the same amount of work. We also
present an approach to optimize BRC performance by judicious selection of block size based on sparsity
characteristics of the matrix.

A CUDA implementation of BRC outperforms NVIDIA CUSP and cuSPARSE libraries and other state-
of-the-art SpMV formats on a range of unstructured sparse matrices from multiple application domains.
The BRC format has been integrated with PETSc, enabling its use in PETSc’s solvers. Furthermore, when
partitioning the input matrix, BRC achieves near linear speedup on multiple GPUs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

GPUs are very well suited for dense matrix computations, but
several challenges are faced in achieving high performance for

In the last decade, there has been a growing trend in the use
of many-core throughput-oriented architectures in scientific com-
puting. In particular, with the emergence of programmer-friendly
APIs such as OpenCL [15] and CUDA [18,9], scientists from a
broad range of disciplines have started leveraging the computation
throughput of GPUs. Sparse Matrix-Vector multiplication (SpMV)
has received much attention since it is a core kernel used in many
algorithms, such as iterative methods for solving large sparse lin-
ear systems of equations.

* Corresponding author.
E-mail address: ashari@cse.ohio-state.edu (A. Ashari).

http://dx.doi.org/10.1016/j.jpdc.2014.11.001
0743-7315/© 2014 Elsevier Inc. All rights reserved.

sparse matrix computations. In the case of SpMV (y = y + Ax),
sparsity and irregularity of the matrix A causes (a) irregular and un-
coalesced accesses to both matrix A and vector x, (b) load imbalance
among threads and warps, and (c) thread divergence at the warp
level. cuSPARSE [11] and CUSP [10,6,7] are two of the most widely-
used CUDA libraries that support different sparse matrix formats;
Diagonal (DIA), ELLPACK (ELL), Compressed Sparse Row (CSR),
Coordinate (COO), and also hybrid (HYB), which combines ELL and
COO. HYB splits the matrix into two parts: (1) a dense part well-
suited to ELL and (2) a sparse part, suited to the COO format.
However HYB suffers from performing redundant computations
(inherent in the ELL part) and also redundant data transfer (due
to the padded elements). Several studies [5,8,28] have proposed

http://dx.doi.org/10.1016/j.jpdc.2014.11.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.11.001&domain=pdf
mailto:ashari@cse.ohio-state.edu
http://dx.doi.org/10.1016/j.jpdc.2014.11.001

4 A. Ashari et al. / J. Parallel Distrib. Comput. 76 (2015) 3-15

a 5 e b pat: [(AIBICIDIEIFIGIOITIT]
0 ClolDTl0 Coumnindex: (1 T3 T2T4TOTTT2T4T5T3]
g g?lgé COORowIndex: (O TOTTTTT2T2T2T2T2T31]
CSR Row Offset:
C Data: Column Index: Data:___Column Index:
AlB 113 d AILB 113 COO Portion n—(p- Data:
% D 1 % 411 1 F]I? (2) ‘11 Row Index:
T 3 . i 3 < ELL Portion Column Index:
e Row perm: __ Column Begin:
E GIHIT]J[OT1TT2T4T5] [4] (2] Memory layout of Data and Column Index:
A 1 [3 -
e S i » b [EIATCIIIFIBIDIGINIT]
LI TS Non-zeros per row: [T | Columnindex: [0] 1] 2 [3 T3 [4]2]4]5]

Fig. 1. Sparse matrix formats: (a) original matrix A, equivalent (b) COO, (c) ELL, (d) HYB, (e) JDS.

formats that work better than HYB for certain types of matrices.
All these methods achieve coalesced accesses for the matrix A,
but lack the generality of HYB and so do not outperform HYB in
general. The main shortcoming of existing methods is the lack of an
adaptive format that can tune itself for different matrix structures
and achieve consistently superior performance across matrices
from various application domains.

In this paper we propose a new adaptive format that tackles the
intra-warp thread divergence problem introduced by CSR based
formats, and the redundant computation and data transfer prob-
lem introduced by the ELL based format. We also address synchro-
nization overhead caused by the reduction/atomic operations in
COO. The proposed format, blocked row-column (BRC), leverages
the sparsity characteristics of the matrix and transforms it to a hy-
brid format such that each warp is assigned the same number of
rows (a block of 32 rows), and all the rows have equal non-zero
elements less than or equal to a tile size. By using a dense struc-
tured blocked format, BRC alleviates thread divergence and redun-
dant computation while achieving a load balanced execution. We
also propose an auto-tuning framework for the model parameter—
width of the block along matrix column. It achieves 96% of the per-
formance obtained from exhaustive search in a bounded domain
of this parameter.

On an NVIDIA GTX Titan (Kepler GK110) GPU, the CUDA im-
plementation of auto-tuned BRC is up to 4.3x and 3.4x (and
average 1.8x and 1.4x) faster than HYB in single and double
precision, respectively. BRC also achieves a maximal speedup of
4.1x and 2.5x (and average 2.4x and 1.9x) over CSR (the most
commonly used format) for single and double precision, respec-
tively. Compared to the COO format, BRC achieves a maximal
speedup of 6.4x and 6.9x (and average 4x and 3.9x) for single
and double precision, respectively. Integrating BRC into PETSc [4,3]
shows that using BRC as the SpMV kernel reduces the total runtime
by 16% and 70% for ILU(0) and Polynomial preconditioners, respec-
tively, when compared to the PETSc AlJ-CUSP format which uses
NVIDIA CUSP [10,6,7] for SpMV.

The rest of the paper is organized as follows: Section 2 reviews
the existing SpMV formats and related work. In Section 3, we de-
scribe the BRC format. Section 4 describes the evaluation method-
ology and Section 5 presents the results. Section 6 discusses the
integration of BRC with PETSc and Section 7 discusses scalability of
BRC using multiple devices. We discuss preprocessing overhead of
BRC and formats that perform data layout transformation or auto-
tuning in Section 8, and conclude in Section 9.

2. Background and related work

In this paper, we target the SpMV problem in the form y =
y + Ax, where y and x are two one-dimensional vectors and A is a
two-dimensional sparse matrix. By using a special representation
of a sparse matrix that only stores the nonzero elements, the

number of operations as well as the memory requirements can
be significantly reduced from that required with a standard dense
matrix representation. A number of formats/optimizations have
been proposed for sparse matrix-vector multiplication. Commonly
used sparse matrix formats have been reviewed in [6,7,25]. In this
section, we provide a brief review of various existing formats.

Coordinate (COO) format: COO is a very simple format in which
the sparse matrix A is represented by three dense vectors: data
that only contains the non-zero values, column index that contains
the column index of the elements corresponding to the data
vector, and row index that contains the row index of the elements
corresponding to data vector.

In order to illustrate different formats, Fig. 1(a) shows an ex-
ample of a sparse matrix with 10 non-zero elements (A to J) dis-
tributed unevenly across 4 rows and 6 columns. Thus 14 of the 24
elements of the matrix are known to have a zero value. The COO
format for this matrix is shown in Fig. 1(b). When matrix A is in COO
format, the SpMV kernel assigns every non-zero element to a sep-
arate GPU thread. As a result, an atomic operation is used to collect
contributions of different threads (mapped to the same row) and to
finalize the reduced results in vector y [7]. One major drawback of
the COO format is the use of atomic operations, especially when un-
even distribution of non-zero elements per row causes some rows
to be denser than others. A highly unbalanced distribution has a
very negative impact on performance because of unbalanced exe-
cution across threads. Even though approaches such as segmented
reduction [7,24] decrease this overhead, the performance achiev-
able with the COO format is limited [7].

Compressed Sparse ROW (CSR) format: CSR works at the granularity
of threads per row(s). This format is similar to COO with the
difference that CSR does not store the row index of every element.
Instead, it stores only the row offsets, as shown by Fig. 1(b). In
this format, non-zero elements of row i and corresponding column
indices are located respectively in the data and column index
vectors atindex r : RowOffset[i] < r < RowOffst[i+ 1]. This format
saves both memory space and load because only the start and end
index of each row are stored. With the CSR format, one approach
(Scalar-CSR) is to make each thread responsible for calculating
the product of a matrix row with the vector x. But this kernel
suffers from thread divergence and un-coalesced access to the
sparse matrix elements. An alternate approach (Vector-CSR [6,7])
improves performance by having all threads of a warp collectively
process a row. But this algorithm wastes resources when rows have
far fewer non-zero elements than a warp size. In the most recent
and efficient implementation of Vector-CSR in the cuSPARSE [11]
and CUSP [10,6,7] libraries, the idea of segmented reduction is
employed, where threads of a warp span multiple rows when the
average number of non-zeros per row is small.

ELLPACK (ELL) format: ELLPACK (ELL) [21] is another format that
works at the granularity of thread per row but with the expense of
redundant memory usage, data transfer and computation power.

Download English Version:

https://daneshyari.com/en/article/432304

Download Persian Version:

https://daneshyari.com/article/432304

Daneshyari.com

https://daneshyari.com/en/article/432304
https://daneshyari.com/article/432304
https://daneshyari.com

