J. Parallel Distrib. Comput. 76 (2015) 49-57

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

A bit-parallel algorithm for searching multiple patterns with

various lengths

Ko Kusudo®P, Fumihiko Ino®*, Kenichi Hagihara®

CrossMark

2 Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka 565-0871, Japan

b Fujitsu Limited, 1-5-2 Higashi-Shimbashi, Minato-ku, Tokyo 105-7123, Japan

HIGHLIGHTS

We present an extension of a bit-parallel algorithm for fast string search.

The algorithm maximizes the stability of search throughput for multiple patterns of different lengths.

Rapid identification of matching patterns is realized by a data padding scheme that regularizes control flow.
Stable search throughput is achieved for arbitrary text and patterns that fit into a word.

]
[
e Bit and data parallelism are exploited via AVX2 and OpenMP, respectively.
[]
[]

ARTICLE INFO

ABSTRACT

Article history:

Received 24 March 2014

Received in revised form

29 October 2014

Accepted 4 November 2014
Available online 15 November 2014

Keywords:

String search
Bit-parallel algorithm
Acceleration

AVX

In this paper, we present an Advanced Vector Extensions (AVX) accelerated method for a bit-parallel
algorithm that realizes fast string search for maximizing stable search throughput. An advantage of our
method is that it accelerates string search by regularizing both control flow and data structures. This
regularization facilitates the exploitation of the latest vector instruction set to achieve efficient parallel
search of multiple patterns of different lengths. We use AVX instructions to increase search throughput
per CPU core and employ OpenMP directives to realize data-parallel search of strings. As a result, we found
that our data structure doubled search throughput as compared with a previous bit-parallel approach
that used a data structure for patterns of the same length. We also found that our method achieved stable
search throughput for arbitrary data if the pattern size is large, but small enough to fit into a word. Some
experimental results are provided to understand the advantage and disadvantage of our method with a
comparison to Aho-Corasick based methods. We believe that our method is useful for large genome texts
with many partial matches.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

String search identifies the location in a large string or text at
which one or more substring patterns appear. Numerous research
areas require the acceleration of multipattern search to handle
large volumes of real-time data [19,6]. For example, network in-
trusion detection systems monitor packets flowing on the net-
work to protect computer systems from malicious access [33,32].
String search is also useful for locating specific amino acid se-
quences in biological databases [30,25,8]. Given performance re-
quirements of such applications, a sophisticated efficient parallel

* Corresponding author.
E-mail address: ino@ist.osaka-u.ac.jp (F. Ino).

http://dx.doi.org/10.1016/j.jpdc.2014.11.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.

implementation is required to achieve string search acceleration.
However, scaling search throughput with the number of process-
ing elements is not easy, because string search can be regarded as
an irregular problem that suffers from burdensome issues such as
irregular control flow and unpredictable data access. In particu-
lar, solving these issues is essential to efficiently parallelize string
search on a single instruction, multiple data (SIMD) parallel ma-
chine, because different control paths can result in SIMD serializa-
tion, which drops the efficiency of parallel execution. Therefore,
accelerating string search is a challenging problem for the parallel
processing community.

Many researchers [33,41,31] tried to parallelize the Aho-
Corasick (AC) algorithm [1], which simultaneously searches mul-
tiple patterns to reuse loaded symbols between multiple patterns.
Because string search is a memory-intensive problem rather than
a computationally intensive problem, this data reuse approach is

http://dx.doi.org/10.1016/j.jpdc.2014.11.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.11.003&domain=pdf
mailto:ino@ist.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.jpdc.2014.11.003

50 K. Kusudo et al. / J. Parallel Distrib. Comput. 76 (2015) 49-57

useful to achieve acceleration. The AC algorithm represents mul-
tiple patterns as a trie data structure, which is regarded as a de-
terministic finite automaton (DFA) that detects a match by loading
symbols from the beginning of the text. If there is no valid state
transition for the input symbol, then the automaton detects a tran-
sition failure and performs backtracking to investigate the possi-
bility of a match from other locations. The time complexity of the
AC algorithm is given by @(n + m + z), where n is the length of
the text, m is the sum of the lengths of the patterns, and z is the
total number of occurrences of the patterns [1]. The AC algorithm
can be easily implemented on a multiple instruction, multiple data
(MIMD) parallel machine by exploiting the data parallelism inher-
ent to string search. This data-parallel AC (DPAC) algorithm divides
the text into chunks, allowing threads to process them in parallel.
Thus, MIMD machines are more tolerant to the irregularity than
SIMD machines, because the former machines can issue different
instructions to different processing elements. The DPAC algorithm
was deployed on many parallel machines such as the graphics pro-
cessing unit (GPU) [32,30,41,31,28,29,34], field programmable gate
array (FPGA) [14,18], Cell Broadband Engine [36], and supercom-
puter [35]. Similar to the AC algorithm, which has the cost @ (z) of
printing the output, the DPAC algorithm has different time com-
plexities for best and worst cases. Furthermore, owing to irregular
control flow that affects branch prediction accuracy and cache hits,
search throughput can vary according to the number of matching
strings [31,35].

The Parallel Failureless Aho-Corasick (PFAC) algorithm [15] ex-
tends the AC algorithm [1] to achieve efficient parallelization on
a GPU [17]. As compared with CPUs, GPUs not only have higher
peak memory bandwidths but also more processing cores. Such
rich computational resources are useful for accelerating a memory-
intensive problem. The PFAC algorithm creates a thread for every
symbol in the text to identify patterns starting at any location.
Each thread manages the current status of a deterministic fi-
nite state machine. Consequently, search throughput decreases
if each thread suffers from multiple state transitions in its state
machine. The time complexity for a thread of PFAC ranges from
O(1) to O©(M), where M denotes the longest length of the pat-
terns to be searched simultaneously [15]. Therefore, performance
degradation occurs if the text has many partially matching pat-
terns and their matching lengths are relatively long. Such unstable
search throughput is not desirable for packet and genome analy-
ses, which must often process high volumes of data. Further, GPUs
have smaller memory capacity than CPUs; consequently, maxi-
mum search throughput can be restricted by the peak bandwidth
of the PCI Express bus, which can diminish the benefits of high-
bandwidth video memory.

Another acceleration approach is to exploit bit parallelism in
string search. An advantage of the bit-parallel algorithm [3] is that
the number of memory references is determined only by the text
and pattern lengths. In other words, the bit-parallel algorithm has
the same best- and worst-case time complexity, so that it can pro-
vide highly robust throughput when faced with various patterns
varying in the text and pattern contents. The bit-parallel algorithm
was extended by Prasad et al. [23,24] to simultaneously search
multiple patterns of the same length.

In this paper, to realize fast string search for maximizing stable
search throughput, we present a high-throughput method that ac-
celerates a bit-parallel algorithm on a multicore CPU. Our method
extends Prasad’s algorithm [23,24] such that it simultaneously
searches multiple patterns of different lengths. In particular, our
method is unique in regularizing both control flow and data struc-
tures for string search, namely an inherently irregular problem.
This regularization facilitates the exploitation of the latest SIMD
instructions that are useful to maximize the performance on a
CPU. Our method efficiently searches multiple patterns of different

lengths by using a data padding scheme that hides the irregularity
of pattern lengths. This scheme is integrated into a two-level par-
allel algorithm that exploits not only data parallelism via OpenMP
directives [4] but also bit parallelism via the latest vector instruc-
tion set called Advanced Vector Extensions (AVX) 2 [10]. The lat-
ter increases search throughput on a CPU core, while the former
increases search throughput on a CPU socket. Our CPU-based so-
lution demonstrates competitive search throughput without using
special hardware devices such as the GPU and FPGA.

In addition to this introduction, this paper is organized as
follows. Section 2 presents related studies in the area of string
search. Section 3 summarizes the bit-parallel algorithm. Section 4
presents our proposed method, and shows how it increases the
search throughput of the bit-parallel algorithm. Section 5 presents
experimental results, and Section 6 provides the conclusions and
suggestions for future work.

2. Related work

Table 1 shows a comparison of previous string matching im-
plementations with their deployed hardware. Prasad et al. [23,24]
extended the bit-parallel algorithm [3] to search multiple biologi-
cal patterns in the text simultaneously. Their algorithm assumes
that all simultaneously searched patterns have the same length
and a word is large enough to store the patterns. Because the cur-
rent x64 architecture uses 64-bit words, the total length of simulta-
neous patterns must therefore be less than 64 symbols. In contrast,
our AVX-based algorithm covers multiple patterns of up to 256
symbols in length and accepts simultaneous patterns of different
lengths. Our algorithm also exploits data parallelism via OpenMP
directives, as detailed in Section 4. Xu et al. [38] implemented
Prasad’s algorithm on a GPU and achieved a search throughput of
0.1 Gbps. A similar bit-parallel algorithm was presented by Yadav
et al. [39]. Bit-parallel algorithms have a disadvantage in terms of
the pattern size. The total length m of patterns must be less than
the word size.

Kiilekci [12] presented a filter-then-search algorithm called
Streaming SIMD Extensions filter (SSEF) for searching a single
pattern. The SSEF algorithm reduced time complexity by detect-
ing possible matches at low cost, which were then given to the
succeeding verification process. This algorithm was implemented
using Streaming SIMD Extensions (SSE) instructions [9] to accel-
erate filtering process for single pattern matching. The SSEF algo-
rithm was ten times faster than the bit-parallel length independent
matching (BLIM) algorithm [13], which overcame the word size
limitation of the bit-parallel algorithm. However, the time com-
plexity of the SSEF algorithm ranges from ©@(nm) to @ (n/m) ac-
cording to preprocessing effects, where n is the length of the text
and m is that of the pattern. The SSEF algorithm was extended by
Faro and Kiilekci [5] for multiple pattern matching. Their achieved
search throughput ranged from 0.4 to 0.6 Gbps on a Core i7 proces-
sor.

Oh and Ro [22] presented multi-threaded multiple pattern
matching with suffix grouping (MTMP-SG), which extended the
Wu-Manber algorithm [37] to overcome performance degrada-
tion that appears when the text includes many matching patterns.
Their extended algorithm groups the target patterns in terms of
their suffixes, and distributes the patterns over multiple threads.
Their CPU-based implementation ran at a throughput of up to
0.4 Gbps, which was faster than a GPU-accelerated AC implemen-
tation when searching more than 5000 patterns simultaneously.
They concluded that their implementation could be accelerated us-
ing SIMD instructions, which we tackled in the present work.

The PFAC algorithm [15] extended the AC algorithm to achieve
efficient parallelization on a manycore GPU. To realize this, the
PFAC algorithm eliminated the backtracking procedure of the AC

Download English Version:

https://daneshyari.com/en/article/432307

Download Persian Version:

https://daneshyari.com/article/432307

Daneshyari.com

https://daneshyari.com/en/article/432307
https://daneshyari.com/article/432307
https://daneshyari.com/

