
J. Parallel Distrib. Comput. 76 (2015) 66–80

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Multi-threaded modularity based graph clustering using the
multilevel paradigm
Dominique LaSalle ∗, George Karypis
Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA

h i g h l i g h t s

• We present efficient serial and parallel algorithms for modularity maximization.
• We show that these algorithms run in O(m+ n) time and O(m+ n) space.
• These algorithms produce clusterings of high modularity.
• These algorithms are 2.7–44 times faster than current methods.
• These algorithms clustered a graph with 3.3 billion edges in under 90 s.

a r t i c l e i n f o

Article history:
Received 24 March 2014
Received in revised form
29 July 2014
Accepted 22 September 2014
Available online 28 September 2014

Keywords:
Graph clustering
Multilevel paradigm
Multi-threading
Shared-memory parallel

a b s t r a c t

Graphs are an important tool for modeling data in many diverse domains. Recent increase in sensor tech-
nology and deployment, the adoption of online services, and the scale of VLSI circuits has caused the size
of these graphs to skyrocket. Finding clusters of highly connected vertices within these graphs is a critical
part of their analysis.

In this paper we apply the multilevel paradigm to the modularity graph clustering problem. We im-
prove upon the state of the art by introducing new efficientmethods for coarsening graphs, creating initial
clusterings, and performing local refinement on the resulting clusterings. We establish that for a graph
with n vertices andm edges, these algorithms have anO(m+n) runtime complexity and anO(m+n) space
complexity, and show that in practice they are extremely fast.Wepresent shared-memory parallel formu-
lations of these algorithms to take full advantage of modern architectures, which we show have a parallel
runtime of O(m/p+n/p+k), where p is the number of threads and k is the number of clusters. Finally, we
present the product of this research, the clustering toolNerstrand.1 In serialmode,Nerstrand runs in a frac-
tion of the time of currentmethods and produces results of equal quality.When run in parallel mode,Ner-
strand exhibits significant speedupwith less than one percent degradation of clustering quality.Nerstrand
works well on large graphs, clustering a graph with over 105million vertices and 3.3 billion edges in 90 s.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Graphs are an important tool for representing data in many di-
verse domains. Graph clustering is a technique for analyzing the
structure of a graph by identifying groups of highly connected ver-
tices. Discovering this structure is an important task in social net-
work, biological network, and web analysis. In recent years, the
scale of these graphs has increased to millions of vertices and

∗ Corresponding author.
E-mail addresses: lasalle@cs.umn.edu (D. LaSalle), karypis@cs.umn.edu

(G. Karypis).
1 The Nerstrand software is available at http://cs.umn.edu/~lasalle/nerstrand.

billions of edges, making this discovery increasingly difficult and
costly.

Modularity [21] is one of the most widely used metrics for de-
termining the quality of non-overlapping graph clusterings, espe-
cially in the network analysis community. The problem of finding
a clustering with maximal modularity is NP-Complete [6]. As a
result many polynomial time heuristic algorithms have been de-
veloped [19,9,20,3,33,8]. Among these algorithms, approaches re-
sembling the multilevel paradigm as used in graph partitioning
have been shown to produce high quality clustering solutions and
scale to large graphs [5,22,26].

However, most of these approaches adhere closely to the
agglomerative method of merging pairs of clusters iteratively.
This can lead to skewed cluster sizes as well as require excessive

http://dx.doi.org/10.1016/j.jpdc.2014.09.012
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.09.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.09.012&domain=pdf
mailto:lasalle@cs.umn.edu
mailto:karypis@cs.umn.edu
http://cs.umn.edu/%7Elasalle/nerstrand
http://dx.doi.org/10.1016/j.jpdc.2014.09.012

D. LaSalle, G. Karypis / J. Parallel Distrib. Comput. 76 (2015) 66–80 67

amounts of computation time.Whilemethods for prioritizing clus-
ter merges have been proposed to reduce skewed cluster sizes,
these approaches are inherently serial. The use of post-clustering
refinement has not been present in most of these approaches.

In this paper we present multilevel algorithms for generating
high quality modularity-based graph clusterings. The contribu-
tions of our work are:

• A method for efficiently contracting a graph for the modularity
objective.
• A robust method for generating clusterings of a contracted

graph.
• A modified version of boundary refinement for the modularity

objective.
• Shared-memory parallel formulations of these algorithms.

We show that for a graph with n vertices and m edges, these al-
gorithms have O(m + n) time and O(m + n) space complexities.
We show that the shared-memory parallel versions of these algo-
rithms have a parallel time complexity ofO(m/p+n/p+k)where p
is the number of threads and k is the number of clusters. To validate
our contributions, we compare our implementation of these algo-
rithms, Nerstrand, against the serial clustering tool Louvain [5] and
the parallel clustering tools community-el [26] and NetworKit [28],
and show that Nerstrand produces clusterings of equal or greater
modularity and is 4.5–27.2 times faster than themethods that gen-
erate clusteringswith competitivemodularity. The parallel version
of Nerstrand is scalable and extremely fast, clustering a graph with
over 105 million vertices and 3.3 billion edges in 90 s using 16
cores.

This paper is organized into the following sections. In Section 2
we define the notation used throughout this paper. In Section 3
we give an overview of current graph clustering methods for
maximizing modularity. In Section 4 we give an overview of the
multilevel paradigm, its use in the graph partitioning problem,
and more recently in the graph clustering problem. Descriptions
of the serial algorithms we developed are presented in Section 5,
and descriptions of their parallel counter parts are presented in
Section 6. In Section 7 we describe our experimental setup. This
is followed by the results of our experiments in Sections 8 and
9, in which we evaluate the quality and speed of the presented
algorithms. Finally in Section 10, we review the findings of this
paper.

2. Definitions and notation

A simple undirected graph G = (V , E) consists of a set of ver-
tices V and a set of edges E, where each edge e = {v, u} is com-
posed of an unordered pair of vertices (i.e., v, u ∈ V). The number
of vertices is denoted by the scalar n = |V |, and the number of
edges is denoted similarly as m = |E|. Each edge e ∈ E can have a
positive weight associated with it that is denoted by θ(e). If there
are no weights associated with the edges, then their weights are
assumed to be one.

Given a vertex v ∈ V , its set of adjacent vertices (connected by
an edge) is denoted by Γ (v) and is referred to as the neighborhood
of v. For an unweighted graph, d(v) denotes the number of edges
incident to v (e.g., d(v) = |Γ (v)|), and for the case of weighted
edges, d(v) denotes the total weight of its incident edges (e.g.,
d(v) =


u∈Γ (v) θ({v, u})).

A clustering C of G is described by the division of V into k
non-empty and disjoint subsets C = {C1, C2, . . . , Ck}, which are
referred to as clusters. The sum of vertex degrees within a cluster
is denoted as d(Ci) (i.e., d(Ci) =


v∈Ci

d(v)). The internal degree
dint(Ci) of a cluster Ci is the number of edges (or sum of the edge
weight) that connect vertices in Ci to other vertices within Ci. The
external degree dext(Ci) of a cluster Ci is the number of edges (or

sum of the edge weight) that connect vertices in Ci to vertices in
other clusters. The neighborhood of a cluster Vi, that is all clusters
connected to Ci by at least one edge, is denoted by Γ (Ci). The
number of edges connecting the cluster Ci to Cj is denoted as dCj(Ci).
Since G is an undirected graph, dCj(Ci) = dCi(Cj). Similarly, the
number of edges (or total edgeweight) connecting a vertex v to the
cluster Ci is denoted as dCi(v) (i.e., dCi(v) =


u∈Ci∩Γ (v) θ({v, u})).

To aid in the discussion of moving vertices between clusters, we
will denote the cluster Ci with the vertex v removed, as Ci − {v},
and the cluster Cj with the vertex v added as Cj + {v}.

The metric of graphmodularity, and the focus of this paper, was
introduced by Newman and Girvan [21], and has become ubiq-
uitous in the recent graph clustering/community detection liter-
ature. Modularity measures the difference between the expected
number of intra-cluster edges and the actual number of intra-
cluster edges. Denoted by Q , the modularity of a clustering C is
expressed as

Q =
1

d(V)


Ci∈C


dint(Ci)−

d(Ci)
2

d(V)


, (1)

where d(V) is the total degree of the entire graph (i.e., d(V) =
v∈V d(v)). From this, we can see the modularity QCi contributed

by cluster Ci is

QCi =
1

d(V)


dint(Ci)−

d(Ci)
2

d(V)


. (2)

The value of Q ranges from −0.5, where all edges in the graph
are inter-cluster edges, and approaches 1.0 if all edges in the graph
are intra-cluster edges and there is a large number of clusters.
Note that this metric does not use the number of vertices within a
cluster, but rather only the edges. Subsequently, vertices of degree
zero, can arbitrarily be placed in any cluster without changing the
modularity.

3. Modularity based graph clustering

A large number of approaches for maximizing modularity have
been developed since it was first proposed [21] a decade ago.
Fortunato [13] provides an overview of modularity and methods
for its maximization.

The majority of approaches fall into the category of agglomer-
ative clustering. In agglomerative clustering, each vertex is placed
in its own cluster, and pairs of clusters are iteratively merged to-
gether if it increases the modularity of the clustering. When there
exists no pair of clusterswhosemergingwould result in an increase
in modularity, the process stops, and the clustering is returned.

The greedy agglomerative method introduced by Clauset et al.
[9], is the most well-known of the these approaches, due to its
ability to find good clusterings in relatively little time. Its low
runtime is the result of exploiting the sparse structure of the graph
to limit the number of merges it needs to consider and the number
of updates that it needs to perform during agglomeration. The
quality of the clusterings it finds is the result of recording the
modularity after each merge, and continuing to perform cluster
merges until there is only a single cluster, and then reverting to
the state with the maximum modularity. The structure used to
maintain this state information is a binary tree in which each node
represents a cluster, and the children of a node are the clusters
which were merged to form the node. They established an upper
bound on the complexity of this algorithm of O(mh log n), where
h is the height of the tree recording cluster merges. If this tree is
fairly balanced, h will be close to log n.

It was noted that this algorithm tends to discover several super-
clusters, composed ofmost of the vertices in the graph.Wakita and

Download English Version:

https://daneshyari.com/en/article/432309

Download Persian Version:

https://daneshyari.com/article/432309

Daneshyari.com

https://daneshyari.com/en/article/432309
https://daneshyari.com/article/432309
https://daneshyari.com

