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h i g h l i g h t s

• Processing real world graphs in an efficient manner through input pruning.
• Two different pruning strategies based on 1-degree nodes and articulation points.
• Improvements upto 35% or 1.57x over current best known results.
• Experimental evaluation of algorithms proposed on several real world graphs.
• Heterogeneous multicore implementation provides better performance efficiency.
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a b s t r a c t

Graph algorithms play a prominent role in several fields of sciences and engineering. Notable among
them are graph traversal, finding the connected components of a graph, and computing shortest paths.
There are several efficient implementations of the above problems on a variety of modernmultiprocessor
architectures.

It can be noticed in recent times that the size of the graphs that correspond to real world datasets has
been increasing. Parallelism offers only a limited succor to this situation as current parallel architectures
have severe short-comings when deployed for most graph algorithms. At the same time, these graphs are
also getting very sparse in nature. This calls for particular solution strategies aimed at processing large,
sparse graphs on modern parallel architectures.

In this paper, we introduce graph pruning as a technique that aims to reduce the size of the graph.
Certain elements of the graph can be pruned depending on the nature of the computation. Once a solution
is obtained on the pruned graph, the solution is extended to the entire graph. Towards, this end we
investigate pruning based on two strategies that justifies their use in current real world graphs.

We apply the above technique on three fundamental graph algorithms: breadth first search (BFS),
Connected Components (CC), and All Pairs Shortest Paths (APSP). For experimentations, we use three
different sources for real world graphs. To validate our technique, we implement our algorithms on a
heterogeneous platform consisting of amulticore CPU and a GPU. On this platform, we achieve an average
of 35% improvement compared to state-of-the-art solutions. Such an improvement has the potential to
speed up other applications reliant on these algorithms.

© 2014 Elsevier Inc. All rights reserved.
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International Conference on High Performance Computing (HiPC), 2013.
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1. Introduction

Graph algorithms find a large number of applications in engi-
neering and scientific domains. Prominent examples include solv-
ing problems arising in VLSI layouts, phylogeny reconstructions,
datamining, image processing, and the like. Some of themost com-
monly used graph algorithms are graph exploration algorithms
such as Breadth First Search (BFS), computing components, and
finding shortest paths. As the current real life problems often
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Fig. 1. A sample of four real world graphs from [45]. On the top-left corner is the graph internet, top-right is the graph web-Google, bottom left is the graph webbase_1M,
and the bottom-right is the graph wiki-Talk.

Table 1
The SNAP [43] graphs used for experimentations and their properties. The column heading r in the last column indicates the number of iterations required to remove all
pendant vertices.

SNAP Graphs

Graph Description Nodes Edges Pendant vertices r

amazon0601 Amazon product co-purchasing network [28] 403,394 3,200,490 38,121 (9.45%) 3
email-Enron Email communication network from Enron [26] 36,692 367,662 2,069 (5.64%) 2
ca-Condmat Collaboration n/w of Condensed Matter [29] 23,133 186,936 3,338 (14.43%) 2
Roadnet-TX Road network of Texas [32] 1,393,383 3,843,320 170,271 (12.22%) 4
Web-Stanford Web graph of Stanford.edu [32] 281,903 2,312,497 21,819 (7.74%) 3
Web-Berkstan Web graph of Berkeley and Stanford [32] 685,230 7,600,595 60,506 (8.83%) 3
Web-Notredam Web graph of Notre Dam [32] 325,729 1,497,134 33,322 (10.23%) 2
p2p-Gnutella Gnutella peer to peer network [27] 62,586 147,892 9,738 (15.56%) 2
LiveJ Links in Live Journal[4] 4,848,571 68,993,773 403,401 (8.3%) 4
Flickr Connection among Flickr users [35] 2,302,925 33,140,018 488,450 (21.2%) 3
Baidu Links in Baidu Chinese online encyclopedia [37] 2,141,300 17,794,839 266,592 (12.4%) 5
Wiki Links in English wikipedia [3] 15,172,740 131,166,252 1,195,612 (7.8%) 6
Orkut Connection of Orkut users [50] 3,072,627 11,718,583 464,274 (15.1%) 4
Patents Citations among US patents [30] 3,774,768 16,518,948 691,160 (18.3%) 2
Roadnet-CA Road network of California [31] 1,965,206 5,533,214 228,357 (11.6%) 3

involve the analysis of massive graphs, it is often seen that parallel
solutions provide an acceptable recourse.

Parallel computing on graphs however is often very challenging
because of their irregular nature ofmemory accesses. This irregular
nature of memory access stresses the I/O systems of most modern
parallel architectures. It is therefore not surprising thatmost of the
recent progress in scalable parallel graph algorithms is aimed at
addressing these challenges via innovative use of data structures,
memory layouts, and SIMD optimizations [36,20,39]. Recent re-
sults have been able tomake efficient use ofmodern parallel archi-
tectures such as the Cell BE [39], GPUs [36,21,20], Intel multi-core
architectures [12,49,1] and the like. Algorithms running of GPUs
have shown standout performance amongst these because of its
massive parallelism.

Another recent development in parallel computing is the de-
sign and engineering of heterogeneous algorithms that are aimed
at heterogeneous computing platforms. Heterogeneous computing
platforms consist of tightly coupled heterogeneous devices includ-
ing CPUs and accelerator(s). One such example is a collection of a
CPU coupled with a graphics accelerator (GPU). Heterogeneous al-
gorithms for CPU+GPU based computational platforms have been

designed for also graph breadth-first exploration [21,36,18]. All of
the above-cited works show an average of 2x improvement over
pure GPU algorithms.

Most of the above works in general aim at data structure
and memory layout optimizations but largely run classical algo-
rithms on the entire input graph. These algorithms are designed
for general graphs whereas the current generation graphs possess
markedly distinguishable features such as being large, sparse, and
large deviation in the vertex degrees. In Fig. 1, we show some of
the real-world graphs taken from [45]. As can be seen from Fig. 1,
these graphs have several vertices of very low degree, often as low
as 1. For instance, in the case of the graph web-Google, 14% of the
vertices have degree 1. Table 1 lists other properties of a few real
world graphs from [45].

Current parallel algorithms and their implementations [36,18,
39,21,47] do not take advantage of the above properties. For in-
stance, in a typical implementation of the breadth-first search al-
gorithm, one uses a queue to store the vertices that have to be
explored next. But, a vertex v of degree 1 that is in the queue will
not lead to the discovery of any yet undiscovered vertices. So, the
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