
J. Parallel Distrib. Comput. 76 (2015) 106–119

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Regularizing graph centrality computations
Ahmet Erdem Sarıyüce a,b,∗, Erik Saule d, Kamer Kaya a, Ümit V. Çatalyürek a,c

a Department of Biomedical Informatics, The Ohio State University, United States
b Department of Computer Science and Engineering, The Ohio State University, United States
c Department of Electrical and Computer Engineering, The Ohio State University, United States
d Department of Computer Science, University of North Carolina at Charlotte, United States

h i g h l i g h t s

• We propose parallel algorithms to compute centrality on accelerators.
• We apply multiple breadth-first search operations simultaneously.
• Vectorization is applied to make the closeness computation faster.
• All the algorithms and techniques are experimentally validated.
• We get better performance than the best existing centrality computation solutions.

a r t i c l e i n f o

Article history:
Received 27 March 2014
Received in revised form
27 July 2014
Accepted 29 July 2014
Available online 7 August 2014

Keywords:
Betweenness centrality
Closeness centrality
BFS
CPU
GPU
Intel Xeon Phi
Vectorization

a b s t r a c t

Centralitymetrics such as betweenness and closeness have been used to identify important nodes in a net-
work. However, it takes days to months on a high-end workstation to compute the centrality of today’s
networks. Themain reasons are the size and the irregular structure of these networks.While today’s com-
puting units excel at processing dense and regular data, their performance is questionable when the data
is sparse. In this work, we show how centrality computations can be regularized to reach higher perfor-
mance. For betweenness centrality, we deviate from the traditional fine-grain approach by allowing aGPU
to execute multiple BFSs at the same time. Furthermore, we exploit hardware and software vectorization
to compute closeness centrality values on CPUs, GPUs and Intel Xeon Phi. Experiments show that only by
reengineering the algorithms andwithout using additional hardware, the proposed techniques can speed
up the centrality computations significantly: an improvement of a factor 5.9 on CPU architectures, 70.4
on GPU architectures and 21.0 on Intel Xeon Phi.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The centrality metrics play an important role in network and
graph analysis since they are related with several concepts such
as reachability, importance, influence, and power [31,12,18,23,29].
Betweenness and closeness (BC and CC) are two such metrics.
However, the complexity of the best algorithms to compute them
is unbearable for today’s large-scale networks: for unweightednet-
works, it is O(nm) where n is the number of vertices and m is the
number of edges in the corresponding graph [5]. For weighted net-
works, the complexity is more, O(nm + n2 log n). Although this

∗ Correspondence to: 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH
43210, United States.

E-mail addresses: sariyuce.1@osu.edu (A.E. Sarıyüce), esaule@uncc.edu
(E. Saule), kamer@bmi.osu.edu (K. Kaya), umit@bmi.osu.edu (Ü.V. Çatalyürek).

already makes the problem hard even for medium-scale graphs,
considering million- and even billion-scale ones, it is clear that we
need efficient high performance computing (HPC) techniques.

There are several GPU-based algorithms and parallelization
techniques for computing betweenness [11,24,29,22] and close-
ness [11,29] centrality. However, as we will show in this paper,
since these techniques process only a single graph traversal at a
time and employ pure fine-grain parallelism, they cannot fully uti-
lize the GPU and reach the device’s peak performance. In addi-
tion to these studies, parallel breadth-first search (BFS), which is
the main building block to compute closeness centrality values,
has been widely studied on shared-memory systems such as GPUs
[10,15,19] and Intel Xeon Phi [27]. Since these works focus on the
parallelization of a single BFS, their natural extension to CC will
yield the iterative execution of a fine-grain parallel CC kernel re-
sponsible from a single graph traversal. In this work, we propose

http://dx.doi.org/10.1016/j.jpdc.2014.07.006
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.07.006&domain=pdf
mailto:sariyuce.1@osu.edu
mailto:esaule@uncc.edu
mailto:kamer@bmi.osu.edu
mailto:umit@bmi.osu.edu
http://dx.doi.org/10.1016/j.jpdc.2014.07.006


A.E. Sarıyüce et al. / J. Parallel Distrib. Comput. 76 (2015) 106–119 107

novel and efficient algorithms and techniques to compute be-
tweenness centrality on GPU and closeness centrality on GPU and
Intel Xeon Phi. Althoughwe agree that fine-grain parallelism is still
necessary due to thememory restriction of the cutting-edgemany-
core architectures at hand, we leverage the potential of the hard-
ware by enabling a hybrid coarse/fine-grain parallelism technique
that executes multiple simultaneous BFSs.

Althoughmany of the existing techniques leverage parallel pro-
cessing, one of the most common parallelism available in almost
all of today’s recent processors, namely instruction parallelism via
vectorization, is often overlooked due to nature of the sparse graph
kernels. Graph computations are notorious for having irregular
memory access pattern, and hence for many kernels that require
a single graph traversal, the available vectorization support, which
is a great arsenal to increase the performance, is usually considered
not very effective. It can still be used, for a small benefit, at the ex-
pense of some preprocessing that involves partitioning, ordering
and/or use of alternative data structures. To exploit its full poten-
tial and enable it for simultaneous graph traversal approach, we
provide an ad-hoc CC formulation based on bitwise operations and
propose hardware and software vectorization for that formulation
on cutting-edge hardware. Our approach for closeness centrality
serves as an example to show how vectorization can be utilized for
graph kernels that require multiple BFS traversals. As a result, we
experimentally show that compared to the existing solutions, the
proposed techniques can be significantly faster while computing
exact betweenness and closeness centrality values, on the same
device, i.e., without using an additional hardware resource. Fur-
thermore, the proposed techniques can also be used to compute
approximate BC and CC values for which the graph traversals are
only initiated from a subset of vertices.

The rest of the paper is organized as follows: Section 2 presents
the background information including the notation we used in the
paper, basic sequential algorithms, and a summary of the exist-
ing parallelization approaches including accelerator-based algo-
rithms for betweenness and closeness centrality. The proposed
parallelization algorithms and techniques are explained in Sec-
tion 3 and their performance is evaluated in Section 4. Section 5
concludes the paper.

2. Notation and background

Let G = (V , E) be a simple undirected, unweighted graphmod-
eling a network where each node is represented by a vertex in V ,
and an interaction between two nodes is represented by a single
edge in E. Let n be the number of vertices, m be the number of
edges, and adj(v) be the set of vertices interacting with v.

A path is a sequence of vertices such that there exists an edge be-
tween consecutive vertices. If there is a path from u ∈ V to v ∈ V ,
and hence from v to u, we say that u and v are connected. The short-
est path distance between these vertices is denoted by dst(u, v). If
u = v then dst(u, v) = 0. The graphG is connected if all vertex pairs
are connected. Otherwise,G is disconnected. A graphG′ = (V ′, E ′) is
a subgraph ofG if V ′ ⊆ V and E ′ ⊆ E. Eachmaximal connected sub-
graph of G is a connected component, or simply a component, of G.

2.1. Betweenness centrality

Let G = (V , E) be a connected graph. Let σst be the number of
shortest paths from a source s ∈ V to a target t ∈ V , and σst(v)
be the number of such s-t paths passing through a vertex v ∈ V ,
v ≠ s, t . Let δst(v) = σst (v)

σst
, the fraction of the shortest s-t paths

passing through v among all shortest s-t paths. The betweenness
centrality of v is defined by

bcent[v] =


s≠v≠t∈V

δst(v). (1)

To compute bcent[v] for all v ∈ V , Brandes proposed an al-
gorithm that is based on the accumulation of pair dependencies
over target vertices [5]. After accumulation, the dependency of v
to s ∈ V is

δs(v) =

t∈V

δst(v). (2)

Let preds(u) be the set of u’s predecessors on the shortest paths
from s to all vertices in V . That is,

preds(u) = {v ∈ V : (v, u) ∈ E, dst(s, u) = dst(s, v)+ 1}.

Hence, preds defines the shortest path graph rooted in s. Brandes
observed that the accumulated dependency values can be com-
puted recursively:

δs(v) =


u:v∈preds(u)

σsv

σsu
× (1+ δs(u)) . (3)

Brandes’ algorithm, which is given in Algorithm 1, computes
δs(v) for all v ∈ V \ {s} by using a two-phase approach: First, a
breadth first search (BFS) is initiated from s to compute σsv and
preds(v) for each v: in this forward phase, the algorithm computes
σ [v] for v ∈ V which is the number of shortest paths from the
source vertex s to v. In addition, the predecessors of v on these
shortest paths are stored in pred[v]. Then, in a backward phase,
δs(v) is computed for all v ∈ V in a bottom-upmanner by using (3).

For undirected graphs, each phase of Algorithm 1 processes all
the edges at most once, taking O(m + n) time. The phases are
repeated for each source vertex. The overall complexity of SeqBC is
O(mn). Currently, it is asymptotically the fastest known sequential
algorithm to compute BC.

Algorithm 1: SeqBC(G = (V , E))
1 for all v ∈ V do
2 bcent[v] ← 0
3 for each s ∈ V do
4 stack← ∅, queue← ∅
5 queue.push(s), dst[s] ← 0, σ [s] ← 1
6 for all v ∈ V \ {s} do
7 dst[v] ← ∞, pred[v] ← ∅, σ [v] ← 0

◃Forward Phase
8 while queue is not empty do
9 v← queue.pop(), stack.push(v)

10 for all w ∈ adj(v) do
11 if dst[w] < 0 then
12 dst[w] ← dst[v] + 1
13 queue.push(w)
14 if dst[w] = dst[v] + 1 then
15 σ [w] ← σ [w] + σ [v]
16 pred[w].push(v)

◃Backward Phase
17 for all v ∈ V do
18 δ[v] ← 0
19 while stack is not empty do
20 w← stack.pop()
21 for v ∈ pred[w] do
22 δ[v] ← δ[v] + σ [v]

σ [w]
(1+ δ[w])

23 if w ≠ s then
24 bcent[w] ← bcent[w] + δ[w]

25 return bcent



Download English Version:

https://daneshyari.com/en/article/432312

Download Persian Version:

https://daneshyari.com/article/432312

Daneshyari.com

https://daneshyari.com/en/article/432312
https://daneshyari.com/article/432312
https://daneshyari.com

