
J. Parallel Distrib. Comput. 76 (2015) 120–131

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel performance modeling of irregular applications in
cell-centered finite volume methods over unstructured
tetrahedral meshes
J. Langguth a,∗, N. Wu a,b, J. Chai a,b, X. Cai a,c
a Simula Research Laboratory, Fornebu, Norway
b National University of Defense Technology, Changsha, China
c University of Oslo, Oslo, Norway

h i g h l i g h t s

• Multicore and GPU code optimization for finite volume computation.
• Numerical experiments investigating performance relative to irregularity.
• Detailed performance modeling based on CPU and GPU architecture.
• Generalized performance model for identifying bottlenecks in irregular applications.

a r t i c l e i n f o

Article history:
Received 31 March 2014
Received in revised form
4 October 2014
Accepted 6 October 2014
Available online 16 October 2014

Keywords:
Nvidia K20 GPU
Finite volume method
Unstructured tetrahedral mesh
CUDA programming
OpenMP
Multicore
Performance modeling

a b s t r a c t

Finite volumemethods arewidely used numerical strategies for solving partial differential equations. This
paper aims at obtaining a quantitative understanding of the achievable performance of the cell-centered
finite volumemethod on 3D unstructured tetrahedral meshes, using traditional multicore CPUs as well as
modern GPUs. By using an optimized implementation and a synthetic connectivity matrix that exhibits
a perfect structure of equal-sized blocks lying on the main diagonal, we can closely relate the achievable
computing performance to the size of these diagonal blocks. Moreover, we have derived a theoretical
model for identifying characteristic levels of the attainable performance as a function of hardware
parameters, based on which a realistic upper limit of the performance can be predicted accurately. For
real-world tetrahedral meshes, the key to high performance lies in a reordering of the tetrahedra, such
that the resulting connectivity matrix resembles a block diagonal form where the optimal size of the
blocks depends on the hardware. Numerical experiments confirm that the achieved performance is close
to the practically attainable maximum and it reaches 75% of the theoretical upper limit, independent of
the actual tetrahedral mesh considered. From this, we develop a general model capable of identifying
bottleneck performance of a system’s memory hierarchy in irregular applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For any computer program that implements a numerical com-
putation over an unstructured mesh, irregular accesses to the data
structures are unavoidable. Such irregular data accesses put sig-
nificant pressure on the different levels of the memory hierarchy.
The common wisdom for CPU programming is thus to strive for
good spatial and temporal locality of data on all cache levels. This

∗ Corresponding author.
E-mail addresses: langguth@simula.no (J. Langguth), nanwu@nudt.edu.cn

(N. Wu), chaijun200306@nudt.edu.cn (J. Chai), xingca@simula.no (X. Cai).

strategy becomes even more important on GPUs, because the
discrepancy between a GPU’s global memory bandwidth and its
floating-point capabilities is even wider.

Finite volume methods are widely used numerical strategies
for solving partial differential equations. Advantages of using
finite volumes include built-in support for conservation laws and
applicability for unstructured computational meshes. The cell-
centered finite volumemethod is themost common variant, where
the degrees of freedom lie in the center of each computational cell.
In this paper, we study the most representative 3D scenario where
the computationalmesh is irregularlymade up of tetrahedrawhich
constitute the computational cells. Our objective is to obtain a

http://dx.doi.org/10.1016/j.jpdc.2014.10.005
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.10.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.10.005&domain=pdf
mailto:langguth@simula.no
mailto:nanwu@nudt.edu.cn
mailto:chaijun200306@nudt.edu.cn
mailto:xingca@simula.no
http://dx.doi.org/10.1016/j.jpdc.2014.10.005


J. Langguth et al. / J. Parallel Distrib. Comput. 76 (2015) 120–131 121

quantitative understanding of the impact of spatial and temporal
data locality on the speed of computations when executed on the
Kepler GPU by Nvidia [19] and on a typical dual-socket HPC node
equipped with Intel CPUs.

For an unstructured tetrahedral mesh, the only viable data
structure for storing the tetrahedron-center values is a 1D array.
There is no universally ideal ordering of the tetrahedra. However,
a completely randomordering oftenmeans poor computing speed,
because of the consequent random jumps back and forth in
the 1D array. Another important observation for cell-centered
finite volume computations over tetrahedral meshes is that each
computational cell (except for the boundary cells) is directly
coupled with exactly four neighboring cells. This is so because
the coupling from one tetrahedron to its neighboring tetrahedra
arises from flux-type computations across the four triangular
faces. Without losing generality, it suffices to study the following
computation:

y(i) =

4
j=1

A(i, j) (x(I(i, j)) − x(i)) , (1)

where x and y denote two 1D arrays that store two sets of
tetrahedron-center values. Index i loops from 1 to the total num-
ber of tetrahedra n, where I(i, ·) gives the face-to-face connec-
tion from tetrahedron i to all its four neighboring tetrahedra.
The values of A are weights representing the pairwise tetrahe-
dron–tetrahedron couplings. In terms of data structure, all the
entries of A are typically stored in a 2D array, where the first
dimension equals the total number of tetrahedra, and the second
dimension is four. We also remark that for each tetrahedron, the
associated amount of computation is 11 floating-point operations
(FLOPS), namely 4 subtractions, 4 multiplications and 3 additions.

In order to perform this computation, 4 entries ofA and 5 entries
of x must be provided. Throughout this paper, we assume that A
is stored in the ELLpack matrix format [10]. This means that an
additional 4 entries of I are required. The ELLpack format was
shown to work well on GPUs in [2]. Since most tetrahedra have
exactly four neighbors, it is more efficient to assume this and
use padding if the number of neighbors is lower, rather than to
store the number of neighbors explicitly. Furthermore, we assume
64-bit floating point values and 32-bit integers, which implies a
computational intensity (i.e. FLOP per byte ratio) of 0.125, since 88
bytes must be read to perform 11 FLOPS. However, as each entry
of x is accessed five times – four times by the four neighboring
tetrahedra and once by its tetrahedron owner – proper caching can
reduce the number of memory accesses on x from 5 to an average
of 1 per tetrahedron. This results in an effective computational
intensity relative to memory of 0.196, while the computational
intensity relative to the cache traffic remains at 0.125. Because data
is moved to cache in entire cache lines, the effective intensity can
be even lower. We study this effect in Sections 7 and 8.

In addition to reading the data, one y value of 8 bytes must be
written back to memory for each tetrahedron, which consumes
additional bandwidth onmost systems and thus reduces the above
intensity to 0.1712 and 0.115 respectively. Depending on the
architecture and the size of its cache line, overfetching can occur
which in effect further reduces the above values.

In any case, the kernel is severely memory bound and the max-
imum achievable performance in FLOPSwill be far below the theo-
retical peak performance. In the following, we will investigate the
achievable computational intensity relative to the memory traffic
and caches on theNvidia K20 Kepler GPU and on Sandy Bridge Intel
CPUs.

The remainder of the paper is organized as follows: in Sections 2
and 3, we describe the hardware and the implementations used
for our experiments. Section 4 details the setup of the experiments

while Sections 5 and 6 describe the experimental results. Based on
these, our performance model for the GPU is detailed in Section 7
and that for the CPU in Section 8. Based on this, we develop a
general performance model in Section 9. Finally, we give a brief
discussion of related work and our conclusions.

2. GPU platform and implementation

The heart of our GPU test implementation consists of two CUDA
kernel functions that compute Eq. (1) in a straightforward manner
while using thememory hierarchy efficiently. These are detailed in
Figs. 2 and 3 below.

In order to highlight the details, let us first take a look at the ar-
chitecture andmemoryhierarchy of theNvidiaGK110GPU, labeled
K20m ‘‘Kepler’’. On each of its 13 streaming multiprocessors, the
K20 possesses 48 kB of read-only cache, as well as 64 kB of on-chip
storage that is divided between shared memory and level 1 cache
(L1). In our experiments 48 kB are assigned to shared memory.

In order to obtain the best performance, it is crucial to optimize
the use of this on-chip storage. Accesses to shared memory are
fast, but data has to be placed there explicitly. Read-only cache is
comparably fast [20] and requires only flagging of variables, but
eviction of data from it cannot be controlled by the programmer.
In previous generations of Nvidia GPUs, the read-only cache
was designated as texture cache and could only be accessed for
computation by using unwieldy commands. In CUDA 5.x using
devices with compute capability 3.5 however, variables can easily
be flagged for read-only caching using the const __restrict qualifier,
or the __ldg instruction. Since const __restrict is essentially only
a hint for the compiler to use read-only cache, using __ldg is
preferable for obtaining more predictable performance.

Data that is not fetched into read-only cache or coalesced
using shared memory will be accessed by reading 128 bytes at a
time, i.e. the SIMD width of the GPU, which leads to significant
overfetching since our application loads at most 88 bytes of data
per tetrahedron, and only up to 32 contiguous bytes per array. This
overfetching leads to severely reduced performance. On the other
hand, L2 and read-only cache is read at 32 bytes at a time, and thus
does not suffer from this problem.

We therefore avoid using direct access, which leaves us with
two viable memory placement strategies. In the first option, A and
I are placed in the shared memory, while read-only cache is used
exclusively for caching the x vector. In the second option, all three
arrays are cached in read-only cache. Placing parts of the x vector
into shared memory is not viable, since the elements that will be
accessed are not known beforehand.

Meanwhile, accesses to A and I are regular which allows
explicitly preloading all required elements into shared memory.
When implemented in a straightforward manner, this incurs the
same overfetching problems as direct accesses. However, because
all threads in a thread block can see the same shared memory
contents, it is possible to coalesce these accesses, thereby avoiding
overfetching. This is achieved by spreading the memory accesses
of an entire thread block in such a way that every thread reads one
value at a time, irrespective of which thread will actually use the
value. See Kernel 1 in Fig. 2 for implementation details.

Together, L1, read-only cache, and shared memory can be
thought of as the first level of cache on the K20 GPU. From the
technical point of view, it works in amanner substantially different
fromaCPU,where L1 cache does not need to bemanaged explicitly.
On the other hand, the second level of cache (L2) is rather similar.
The K20m has 1280 kB of L2 cache which is shared among the 13
multiprocessors. All accesses to and from the GPU’s globalmemory
are cached via L2 automatically. Thus, its function is similar to the
shared third level cache on current multicore CPUs. Accesses to



Download English Version:

https://daneshyari.com/en/article/432313

Download Persian Version:

https://daneshyari.com/article/432313

Daneshyari.com

https://daneshyari.com/en/article/432313
https://daneshyari.com/article/432313
https://daneshyari.com

