
Journal of Logical and Algebraic Methods in Programming 85 (2016) 98–120

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Language definitions as rewrite theories

Vlad Rusu a, Dorel Lucanu b,∗, Traian-Florin Şerbănuţă c, Andrei Arusoaie b,a, 
Andrei Ştefănescu d, Grigore Roşu d,b

a Inria Lille Nord Europe, France
b “Alexandru Ioan Cuza” University of Iaşi, Romania
c University of Bucharest, Romania
d University of Illinois at Urbana Champaign, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2014
Received in revised form 31 August 2015
Accepted 1 September 2015
Available online 7 September 2015

Keywords:
Operational semantics
Rewrite theories
Symbolic execution
K Framework
Maude

K is a formal framework for defining operational semantics of programming languages. 
The K-Maude compiler translates K language definitions to Maude rewrite theories. The 
compiler enables program execution by using the Maude rewrite engine with the compiled 
definitions, and program analysis by using various Maude analysis tools. K supports 
symbolic execution in Maude by means of an automatic transformation of language 
definitions. The transformed definition is called the symbolic extension of the original 
definition. In this paper we investigate the theoretical relationship between K language 
definitions and their Maude translations, between symbolic extensions of K definitions 
and their Maude translations, and how the relationship between K definitions and their 
symbolic extensions is reflected on their respective representations in Maude. In particular, 
the results show how analysis performed with Maude tools can be formally lifted up to 
the original language definitions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

K [1] is a formal framework for defining operational semantics of programming languages. The version of K that we are 
using in this paper1 includes options that have Maude [2] as a backend: the K compiler translates a K definition into a 
Maude module, and then, the K runner uses Maude to execute or analyse programs in the defined language.

The Maude backend of K has been extended with symbolic execution support [3]. Briefly, a K language definition 
is automatically transformed into a symbolic language definition. The concrete execution of a program using the symbolic 
definition is the symbolic execution of the same program using the original language definition. The transformation consists 
of two steps: (1) incorporating path conditions in program configurations, and (2) changing the semantics rules to match on 
symbolic configurations and to automatically update the path conditions. A symbolic execution path is called feasible if its 
path conditions are satisfiable. Two results relating concrete and symbolic program executions are proved in [3]: coverage, 
saying that for each concrete execution there is a feasible symbolic execution along the same program path; and precision, 
saying that for each feasible symbolic execution there is a concrete execution along the same program path. If both coverage 
and precision hold we say that we have a symbolic extension relation between a language and a symbolic language.

* Corresponding author.
E-mail address: dlucanu@info.uaic.ro (D. Lucanu).

1
K version 3.4 is available in the online interface https://fmse.info.uaic.ro/tools/K-3.4/. A virtual machine running K 3.4 can be downloaded from 

http://www.kframework.org/imgs/releases/kvm-3.4.zip. The above links are also accessible from the main page of K http://www.kframework.org/.

http://dx.doi.org/10.1016/j.jlamp.2015.09.001
2352-2208/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2015.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:dlucanu@info.uaic.ro
https://fmse.info.uaic.ro/tools/K-3.4/
http://www.kframework.org/imgs/releases/kvm-3.4.zip
http://www.kframework.org/
http://dx.doi.org/10.1016/j.jlamp.2015.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2015.09.001&domain=pdf


V. Rusu et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 98–120 99

Fig. 1. Faithful vs. approximate representations.

In this paper we propose two ways of representing K language definitions in Maude: a faithful representation and an 
approximate one. We then study the relationship between K language definitions (including symbolic ones, obtained by 
the above-described transformation) and their representations in Maude. We also show how the relationship between a 
language L and its symbolic extension Ls is reflected on their respective representations in Maude. These results ensure 
that (symbolic) analysis performed with Maude tools on the (faithful and approximate) Maude representations of languages 
can be lifted up to the original language definitions. The various results that we have obtained are graphically depicted in 
the diagrams in Fig. 1, where the arrows have the following meaning:

p
transformations preserving the property p,

p
relations preserving the property p.

The dashed arrows show the results proved in this paper.
In the faithful encoding, each semantics rule of the language definition L is translated into a rewrite rule of the rewrite 

theory R(L). Equations are only introduced in order to express equality in the data domain. The resulting rewrite theory is 
proved to be executable by Maude, and the transition system generated by the language definition is shown to be isomorphic 
to the one generated by the rewrite theory. This ensures that the encoding theories R(L) and R(Ls) also satisfy the 
coverage and precision properties relating L and Ls. Thus, we can say that the rewrite theory R(Ls) is a symbolic extension
of R(L) (in terms of rewrite theories). This means that the symbolic extension and faithful encoding operations commute, 
as shown by the commuting diagram in the left-hand side of Fig. 1.

As a consequence, both positive and negative results of reachability analysis obtained on rewrite theories (i.e., by using 
the Maude search command) also hold on the original language definitions. Moreover, all symbolic reachability analysis 
results obtained on the rewrite theory representation R(Ls) of a symbolic language Ls also hold on the rewrite theory 
representation R(L) of the language L. The latter property is analogous to the results obtained in [4], where rewriting 
modulo SMT is shown to be related to (usual) rewriting in a sound and complete way.

For nontrivial language definitions the faithful encoding is not very practical, because it typically generates a huge state-
space that is not amenable to reachability analysis. This is why we introduce approximate representations of language 
definitions as two-layered rewrite theories. These approximations are obtained by splitting the semantic rules of the language 
into two sets, called layers, such that the first layer forms a terminating rewrite system. The one-step rewriting in such a 
theory is obtained by computing an irreducible form w.r.t. rules from the first layer (according to a given strategy), and then 
applying a rule from the second layer.

In an (approximating) two-layered rewrite theory R(L), only a subset of the executions of programs in the original 
language L are represented, i.e., R(L) is an under-approximation of L. The consequence is that only positive results of 
reachability analysis on the two-layered rewrite theories can be lifted up to the corresponding language definitions. The 
approximate encoding of a language by a two-layered rewrite theory can also be seen as the output of a compiler that solves 
some semantics choices left by the language definition at compile-time. For example, in C and C++, the order in which 
the operands of addition are evaluated is a compile-time choice. By turning the operand-evaluation rules into first-layer 
rules, and by letting Maude automatically execute these rules in various orders according to certain strategies, one can 
reproduce the various design compile-time choices for the evaluation of arguments. However, this comes at a price. Due 
to the side effects of some operators, there are C/C++ programs with nondeterministic behaviour. This feature cannot be 
exhibited with the operand-evaluation rules in the first layer; in order to exhibit the nondeterminism, the rules evaluating 
the operators must be in the second layer. For programs using operators without side effect, there is no reason to introduce 
their evaluation rules in the second layer because the result is always the same due the confluence of these rules.

The approximate representations are also useful during the design of the semantics of a language. If one wishes to test 
the behaviour of some semantical rule, then one can include only that rule in the second layer and use the K stepper to 
see the effect of the rule.

We note that approximating two-layered rewrite theories have some limitations: only the coverage property relating 
the language definition L to its symbolic version Ls also holds on their respective approximate-encoding theories; the 
precision property holds only in some restricted cases (presented in Theorem 6 later in the paper). Problematic for this are 
the conditional rules. The symbolic version must execute both branches, when the condition holds and when the condition 
does not hold. Therefore the rules corresponding to the two cases must be in the second layer, otherwise the first layer 
could become non-terminating due to iterative statements. This means that some rules which are in the first layer in R(L)

are in the second layer in R(Ls). This could affect the order in which the rules are being executed. Recall that the precision 



Download	English	Version:

https://daneshyari.com/en/article/432608

Download	Persian	Version:

https://daneshyari.com/article/432608

Daneshyari.com

https://daneshyari.com/en/article/432608
https://daneshyari.com/article/432608
https://daneshyari.com/

