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Deadlocks are a common problem in programs with lock-based concurrency and are hard 
to avoid or even to detect. One way for deadlock prevention is to statically analyse the 
program code to spot sources of potential deadlocks.
We reduce the problem of deadlock checking to data race checking, another prominent 
concurrency-related error for which good (static) checking tools exist. The transformation 
uses a type and effect-based static analysis, which analyses the data flow in connection 
with lock handling to find out control-points which are potentially part of a deadlock. 
These control-points are instrumented appropriately with additional shared variables, i.e., 
race variables injected for the purpose of the race analysis. To avoid overly many false 
positives for deadlock cycles of length longer than two, the instrumentation is refined by 
adding “gate locks”. The type and effect system, and the transformation are formally given. 
We prove our analysis sound using a simple, concurrent calculus with re-entrant locks.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Concurrent programs are notoriously hard to get right and at least two factors contribute to this fact: Correctness prop-
erties of a parallel program are often global in nature, i.e., result from the correct interplay and cooperation of multiple 
processes. Hence also violations are non-local, i.e., they cannot typically be attributed to a single line of code. Secondly, the 
non-deterministic nature of concurrent executions makes concurrency-related errors hard to detect and to reproduce. Since 
typically the number of different interleavings is astronomical or infinite, testing will in general not exhaustively cover all 
behaviour and errors may remain undetected until the software is in use.

Arguably the two most important and most investigated classes of concurrency errors are data races [6] and deadlocks
[13]. A data race is the simultaneous, unprotected access to mutable shared data with at least one write access. A deadlock 
occurs when a number of processes are unable to proceed, when waiting cyclically for each other’s non-shareable resources 
without releasing one’s own [11]. Deadlocks and races constitute equally pernicious, but complementary hazards: locks offer 
protection against races by ensuring mutually exclusive access, but may lead to deadlocks, especially using fine-grained 
locking, or are at least detrimental to the performance of the program by decreasing the degree of parallelism. Despite 
that, both share some commonalities, too: a race, respectively a deadlock, manifests itself in the execution of a concurrent 
program, when two processes (for a race) resp. two or more processes (for a deadlock) reach respective control-points that 
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Table 1
Abstract syntax.

P ::= ∅ | p〈t〉 | P ‖ P program
t ::= v value

| let x:T = e in t local variables and sequ. composition
e ::= t thread

| v v application
| if v then e else e conditional
| spawn t spawning a thread
| new L lock creation
| v. lock acquiring a lock
| v. unlock releasing a lock

v ::= x variable
| lr lock reference
| true | false truth values
| fn x:T .t function abstraction
| fun f :T .x:T .t recursive function abstraction

when reached simultaneously, constitute an unfortunate interaction: in case of a race, a read–write or write–write conflict 
on a shared variable, in case of a deadlock, running jointly into a cyclic wait.

In this paper, we define a static analysis for multi-threaded programs which allows reducing the problem of deadlock 
checking to race condition checking. Our target language has explicit locks, i.e. we address non-block structured locking, and 
we can certify programs as safe which cannot be certified by approaches that use a static lock order (see Section 7 on 
related work).

The analysis consists of two phases. The first phase statically calculates information about lock usages per thread through 
a type system. Since deadlocks are a global phenomenon, i.e., involving more than one thread, the derived information is 
used in the second phase to instrument the program with additional variables to signal a race at control points that poten-
tially are involved in a deadlock. The formal type and effect system for lock information in the first phase uses a constraint 
based flow analysis as proposed by Mossin [23]. The effects, using the flow information, capture in an approximate manner 
how often different locks are being held and is likewise formulated using constraints. This information roughly corresponds 
to the notion of lock-sets in that at each point in the program, the analysis gives approximate information which locks are 
held. In the presence of re-entrant locks, an upper bound on how many times the locks are being held is given, which 
corresponds to a “may”-over-approximation. In contrast, the notion of lock-sets as used in many race-freedom analyses, 
represents sets of locks which are necessarily held, which dually corresponds to a “must”-approximation.

Despite the fact that races, in contrast to deadlocks, are binary global concurrency errors in the sense that only two 
processes are involved, the instrumentation is not restricted to deadlock cycles of length two. To avoid raising too many 
spurious alarms when dealing with cycles of length larger than 2, the transformation adds additional gate locks to check 
possible interleavings to a race (deadlock) pairwise.

Our approach widens the applicability of freely available state-of-the-art static race checkers: Goblint [32] for the C 
language, which is not designed to do any deadlock checking, will report appropriate data races from programs instrumented 
through our transformation, and thus becomes a deadlock checker as well. Chord [24] for Java only analyses deadlocks 
of length two for Java’s synchronized construct, but not explicit locks from java.util.concurrent, yet through our 
instrumentation reports corresponding races for longer cycles and for deadlocks involving explicit locks.

The remainder of the paper is organized as follows. Section 2 presents syntax and operational semantics of the calculus. 
Section 3 afterwards provides the specification of the data flow analysis in the form of a (constraint-based) effect system, 
whose algorithmic solution is formalized in Section 4. The obtained information is used in Sections 5 and 6 to instrument 
the program with race variables and additional locks. The sections also prove the soundness of the transformation. We 
conclude in Section 7 discussing related and future work.

2. Calculus

In this section we present the syntax and (operational) semantics for our calculus, formalizing a simple, concurrent 
language with dynamic thread creation and higher-order functions. Locks can be created dynamically, they are re-entrant 
and support non-lexical use of locking and unlocking. The abstract syntax is given in Table 1. A program P consists of a 
parallel composition of processes p〈t〉, where p identifies the process and t is a thread, i.e., the code being executed. The 
empty program is denoted as ∅. As usual, we assume ‖ to be associative and commutative, with ∅ as neutral element. As 
for the code we distinguish threads t and expressions e, where t basically is a sequential composition of expressions. Values 
are denoted by v , and let x:T = e in t represents the sequential composition of e followed by t , where the eventual result 
of e, i.e., once evaluated to a value, is bound to the local variable x.

Expressions, as said, are given by e, and threads count among expressions. Further expressions are function application, 
conditionals, and the spawning of a new thread, written spawn t . The last three expressions deal with lock handling: new L
creates a new lock (initially free) and returns a reference to it (the L may be seen as a class for locks), and furthermore 
v. lock and v. unlock acquire and release a lock, respectively. Values, i.e., evaluated expressions, are variables, lock refer-
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