
Journal of Logical and Algebraic Methods in Programming 83 (2014) 427–458

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Towards the flexible reuse of model transformations:
A formal approach based on graph transformation

Juan de Lara ∗, Esther Guerra

Computer Science Department, Universidad Autónoma de Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2013
Received in revised form 31 July 2014
Accepted 13 August 2014
Available online 23 August 2014

Keywords:
Model-driven engineering
Graph transformation
Meta-modelling
Genericity
Reusability

Model transformations are the heart and soul of Model-Driven Engineering (MDE). However, 
in order to increase the adoption of MDE by industry, techniques for developing model 
transformations in the large and raising the quality and productivity in their construction, 
like reusability, are still needed.
In previous works, we developed a reutilization approach for graph transformations based 
on the definition of concepts, which gather the structural requirements needed by meta-
models to qualify for the transformations. Reusable transformations are typed by concepts, 
becoming transformation templates. Transformation templates are instantiated by binding
the concept to a concrete meta-model, inducing a retyping of the transformation for the 
given meta-model.
This paper extends the approach allowing heterogeneities between the concept and 
the meta-model, thus increasing the reuse opportunities of transformation templates. 
Heterogeneities are resolved by using algebraic adapters which induce both a retyping and 
an adaptation of the transformation. As an alternative, the adapters can also be employed 
to induce an adaptation of the meta-model, and in this work we show the conditions for 
equivalence of both approaches to transformation reuse.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Model-Driven Engineering (MDE) [3,38] promotes an active use of models in the different phases of the software de-
velopment. This involves the transformation of models between different languages – ranging from general-purpose to 
domain-specific modelling languages (DSMLs) – until code for the final application is generated.

MDE can be seen as a reutilization approach, where modelling languages and their associated transformations and code 
generators are reused across projects to describe different applications within a domain, but with certain variability that is 
configured through a model. However, it is also true that MDE is type-centric [7], because the different supporting artefacts 
(transformations and code generators) are defined over the types of a specific meta-model and cannot be reused for other 
meta-models, even if they share essential structural features. This rigidity hampers the adoption of MDE in industry because 
similar transformations have to be repeatedly developed, even for meta-models with only slight differences.

Taking ideas from generic programming, in previous works we proposed the definition of transformations over so-called 
concepts [7,16,17], instead of over concrete meta-models. In our context, a concept specifies the structural requirements that 
meta-models need to fulfill in order to be able to apply a certain model operation (e.g. a transformation) on their instances. 

* Corresponding author.
E-mail addresses: Juan.deLara@uam.es (J. de Lara), Esther.Guerra@uam.es (E. Guerra).

http://dx.doi.org/10.1016/j.jlamp.2014.08.005
2352-2208/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2014.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:Juan.deLara@uam.es
mailto:Esther.Guerra@uam.es
http://dx.doi.org/10.1016/j.jlamp.2014.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2014.08.005&domain=pdf


428 J. de Lara, E. Guerra / Journal of Logical and Algebraic Methods in Programming 83 (2014) 427–458

Fig. 1. Rule template defined over a concept, and instantiation via a binding.

Our concepts resemble meta-models, but their elements (classes, references, fields) are variables that need to be bound
to concrete meta-model elements. In this way, similar to generic programming templates [16], a transformation template is 
defined over a concept and is instantiated for a specific meta-model via a binding.

In [6], we formalized these techniques using graph transformation (GT) [11] to express model transformations, and re-
stricting the binding to simple injective mappings between the concept and the meta-model elements. In this paper, we 
expand the formalization by allowing a more flexible binding by means of algebraic adapters, which are able to resolve het-
erogeneities between the concept and the meta-model, in the line of [29]. This approach increases the reuse opportunities of 
transformation templates because their associated concepts can be bound to a wider set of meta-models. Interestingly, the 
formalization of our adapters involves building a “virtual view” that unifies the two main approaches to genericity in MDE 
(namely, adaptation of the transformation [29] and meta-model adaptation [18]) and enables the study of the conditions for 
their equivalence.

The rest of this paper is organized as follows. Section 2 presents an overview of our approach. Section 3 formalizes 
(meta-)models and concepts. Section 4 introduces binding adapters and Section 5 shows their use to instantiate a GT tem-
plate and to build a derived model. Section 6 compares with related work and, finally, Section 7 concludes the paper and 
identifies lines of future work. Appendix A shows the details of the different proofs.

2. Motivation, overview and challenges

Assume we want to define a catalogue of refactorings for object-oriented notations [14] using GT rules. The first step is to 
define a meta-model so that the rules can be typed. However, this means that the rules will only be applicable to instances 
of such meta-model. This prevents the refactorings from being reused, as they cannot be applied to other object-oriented 
notations sharing common features – like UML class diagrams [37], KM3 [22] or Ecore [34] – but we need to encode slight 
variations of the same refactorings for each notation.

To overcome this limitation, we propose defining the rules over a so-called concept, as illustrated in Fig. 1. Label 1 depicts 
a concept for the refactoring of object-oriented notations. Label 2 shows one simple refactoring rule, which moves a field 
from a class to one of its parents. This rule is typed over the concept. A concept has the form of a standard meta-model, but 
it needs to be bound to some concrete meta-model, as shown in label 3. This binding induces an adaptation of the rule via 
a high-order transformation (HOT) to make it applicable to the meta-model instances, as shown in label 4. Hence, similar 
to generic programming [10], GT rules so defined become templates that need to be instantiated for particular meta-models. 
This approach promotes reusability because the same transformation can be applied to every meta-model to which we can 



Download English Version:

https://daneshyari.com/en/article/432615

Download Persian Version:

https://daneshyari.com/article/432615

Daneshyari.com

https://daneshyari.com/en/article/432615
https://daneshyari.com/article/432615
https://daneshyari.com

