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Program transformation is currently de facto restricted to abstract syntax tree rewriting.
However, many program transformation patterns, in particular in the realm of high-
performance code generation, can more naturally be understood and expressed as graph
transformations. We describe the conceptual organisation of a system based on application
of algebraic graph transformation rules to data-flow and control-flow graphs, and outline
the work, both theoretical and of implementation nature, that still needs to be done to
realise this long-term project.
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1. Introduction

An important part of the supporting infrastructure for optimising code generators, in particular in compilers, consists of
analyses of graphs, especially control-flow graphs and data-flow graphs. In addition, many of the optimisations enabled by
these analyses are then usefully understood as graph transformations.

Interestingly, the program transformation literature almost exclusively concentrates on transformation of (higher-order)
abstract syntax trees. It is of course customary in a compiler context to parse the given programs into abstract syntax trees,
and then extract from these the necessary information to construct the graphs to be used for data-flow and control-flow
analyses using attribute grammars, while still considering the abstract syntax trees as the internal representation of the
program.

However, many of the transformations that are used for code optimisation, in particular in the back-ends of compilers,
act on patterns that can usefully be thought of as graph patterns, and the resulting transformations are frequently explained
as graph transformations applied to the control-flow graph and the data-flow graph, which are usually considered as only
derived from the programs being transformed.

In this paper, we instead adopt the approach of representing (parts of) programs as graphs, in particular as nested graphs
with control-flow graphs and data-flow graphs at different levels. Mathematically, we represent all these graphs as directed
hypergraphs, and use consistent drawing conventions. In directed hypergraphs, hyperedges (drawn as rectangles) can have
multiple input nodes (connected by “input tentacles” drawn as arrows from the nodes to the edges) and multiple output
nodes (connected by “output tentacles” drawn as arrows from the edges to the nodes). The graph itself may also have an
input/output interface consisting of two lists of nodes; input nodes are indicated by numbered triangles above, and output
nodes by numbered triangles below. Fig. 1 shows a data-flow graph (which is therefore acyclic) representing the expression
2 + (7 + (3 + 5 · x) · x) · x with x standing for the single input; this evaluates a polynomial at x using Horner’s rule. Fig. 2 is
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Fig. 1. Data-flow graph. Fig. 2. Control-flow graph.

a control flow graph for a particular way to re-arrange the nested loops of matrix multiplication [1]. Control-flow graphs,
like finite automata, have a single start state (drawn as an input), and all hyperedges are actually single-input single-output
edges.

1.1. Data-flow-graph transformations

For example, common subexpression elimination can be understood as forming the quotient of a data-flow graph by a
congruence relation; “dead-variable elimination” can be understood as transitioning to the sub-graph of a data-flow graph
that is reachable from the declared output nodes.

Many cases of “strength reduction”, i.e., of replacing special cases of more expensive operations with less expensive
operations, are graph rewriting rules that correspond directly to term rewriting rules, such as 2∗x → shiftLeft(x,2). However,
non-linear rules such as x + x → shiftLeft(x,2) are more typically thought of as local graph rewriting rules where the two
arguments of “+” have to be the same node, than as non-linear term or graph rewriting rules where the two sub-terms
matched to x are compared for equality or isomorphism (or, more precisely, bisimilarity).

A more intricate situation arises in SIMD-isation: Assume that SIMD arithmetic for vectors of four elements are available,
but a given program contains only three independent additions that can be grouped into a vector operation at a certain
point. Since that vector operation will always perform four additions, that forth addition, if considered as an individual
operation, is technically dead code since its result will not be used. This particular SIMD-isation transformation can therefore
be considered as dead-variable introduction, followed by factoring multiple occurrences of isomorphic subgraphs into a
single copy using SIMD operations instead of individual operations, again as data-flow graph transformation.

1.2. Control-flow-graph transformations

Many other common optimisation techniques can usefully be understood as control-flow graph transformations, for
example:

• Dead-code elimination can be understood as transitioning to the sub-graph of a control-flow graph that is reachable
from the declared entry nodes.

• Loop unrolling can be used to reduce the run-time impact of loop overhead; it will typically be a control-flow transfor-
mation that also affects the loop control logic, which may therefore also affect some data manipulations.

One of the purposes of many control-flow graph transformations, including loop unrolling, is to enable further data-flow
optimisations. For this purpose, it makes sense to consider the edges of the control-flow graph to be labelled with data-flow
graphs corresponding to “straight-line code”, also called “basic blocks”.2

2 Integrating both data-flow and control-flow aspects in a single non-nested graph structure is feasible only for very restricted purposes. In general, one
particularly obvious problem is that data-flow “sharing” and control-flow “branching” are incompatible interpretations of multiple outgoing edges.
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