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We present a memory model that explicitly constructs and stores the temporal information
about when a stimulus was encountered in the past. The temporal information is
constructed from a set of temporal context vectors adapted from the temporal context
model (TCM). These vectors are leaky integrators that could be constructed from a
population of persistently firing cells. An array of temporal context vectors with different
decay rates calculates the Laplace transform of real time events. Simple bands of
feedforward excitatory and inhibitory connections from these temporal context vectors
enable another population of cells, timing cells. These timing cells approximately reconstruct
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Episodic memory the entire temporal history of past events. The temporal representation of events farther in
the pastis less accurate than for more recent events. This history-reconstruction procedure,
which we refer to as timing from inverse Laplace transform (TILT), displays a scalar property
with respect to the accuracy of reconstruction. When incorporated into a simple associative
memory framework, we show that TILT predicts well-timed peak responses and the Weber
law property, like that observed in interval timing tasks and classical conditioning
experiments.
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1. Introduction approximately constant, a manifestation of Weber’s law

(Gibbon, 1977). More specifically, the response distributions

Timing the interval between two events is one of the basic
cognitive capacities we all share. This has been rigorously
studied in a wide variety of classical conditioning experiments
on animals (Drew et al., 2005; Smith, 1968) and explicit interval
timing experiments on humans and animals (Rakitin et al,,
1998; Ivry and Hazeltine, 1995; Wearden, 1992; Roberts, 1981).
One basic finding of these experiments is scalar variability in
the underlying timing distributions. Suppose that subjects are
trained to reproduce a time interval of a given duration, d,. The
reproduced duration d generally forms a smooth probability
distribution peaked approximately at d,. Moreover the data
shows that the standard deviation of the response distribution
is proportional to d,. That is the ratio of the interval to be timed
and the standard deviation of the distribution of responses is
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for different values of d, overlap when they are scaled linearly.
This is referred to as the scalar property. When the interval to
be timed is short, the peak in the response distribution is
narrow and the estimated duration is more accurate than
when the interval to be timed is long. Superficially this
appears fairly intuitive, but the underlying scalar property
has very important implications for models of timing. Similar
features are observed in classical conditioning experiments
where animals are trained with a conditioned stimulus (CS)
followed by an unconditioned stimulus (US) after a latency
period. It is observed that the peak of the conditioned
response (CR), which we can think of as a measure of the
animal’s anticipation of the US, approximately matches the
reinforcement latency during training. In addition, the time
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distribution of the CR activity approximately exhibits the
scalar property described above (Drew et al., 2005; Smith,
1968).

In order to model these and related tasks, we need an
efficient timing mechanism. This timing mechanism then
needs to be integrated with a memory mechanism in order to
store and retrieve the timing information. It has been argued
that in the 10 to 100 ms range, relevant to speech and motor
processing, the dynamically evolving pattern of activity in a
spatially distributed network of neurons, is intrinsically
sufficient as a timing mechanism (Mauk and Buonomano,
2004), and hence it is unnecessary to postulate a specialized
mechanism for timing. However, for longer time scales of the
order of seconds to minutes, it seems necessary to have a
specialized mechanism. There are many timing models
developed over decades involving a variety of specialized
mechanisms. They can be divided into two broad classes. See
Mauk and Buonomano (2004), Gibbon et al. (1997), Miall (1996),
Eagleman (2008), Ivry and Schlerf (2008) for reviews.

The more prominent class of models of timing relies on an
internal clock-like mechanism. Models in this class use
different mechanisms to construct a scalar representation of
elapsed time. Some (Gibbon, 1977; Church, 1984; Gallistel and
Gibbon, 2000) use a pacemaker whose pulses will be accumu-
lated to represent perceived time, while others (Church and
Broadbent, 1990; Treisman et al., 1990; Miall, 1990) use a
population of neural oscillators of different frequencies. Still
others (Matell and Meck, 2004; Buhusi and Meck, 2005) use a
distributed idea of detecting the coincidental activity of
different neural populations to represent the ticks of the
internal clock.

The other class of models posits a distributed population of
neural units, each of which responds to an external stimulus
with a different latency. A straightforward approach is to use
tapped delay lines (Moore and Choi, 1997) or chained
connectivity between late spiking neurons (Tieu et al., 1999).
In these models, the delays accumulated while traversing
through each link of the chain add up, thereby making the
different links of the chain respond with different latencies. A
more sophisticated way to accomplish the same goal is to
require the different members of the population to be
intrinsically different and react to an external stimulus at
different rates. The spectral timing model (Grossberg and
Schmajuk, 1989; Grossberg and Merrill, 1992) and multi-time
scale (MTS) theory (Staddon et al., 2002) both share this
property. MTS, for instance, assumes a cascade of leaky
integrators where the activity in each unit exponentially
decays following a stimulus with a distinct decay rate.

In this paper, we construct a timing mechanism in the
framework of the temporal context model (TCM), an associa-
tive memory model that has been extensively applied to
problems in episodic recall (Howard and Kahana, 2002;
Howard et al,, 2005; Sederberg et al,, 2008). This timing
model falls into the second class of timing models—it has no
explicit clock system like a pacemaker or synchronous
oscillators. Instead, the model requires a population of
persistently firing neurons with a range of decay rates, similar
in many respects to the cascade of leaky integrators of MTS
(Staddon et al., 2002). We show that this population of leaky
integrators implements the Laplace transform of the stimulus

sequence. Using this insight, we approximate the inversion of
the Laplace transform, constructing a separate population of
“timing cells”. We refer to this procedure as timing from
inverse Laplace transform, TILT. The approximation of the
inverse Laplace transform can be accomplished using bands of
alternating feedforward excitation and inhibition from the
leaky integrators. In effect, the leaky integrators implement
the Laplace transform of the stimulus history and the timing
cells approximately inverts this Laplace transform, thus
generating an approximate reconstruction of the stimulus
history. Each of the timing cells responds with peak activity at
a different delay following a stimulus. The effect of this
inversion is thus not unlike that generated by the spectral
timing model or the delay line models. However, it turns out
that the activity across the timing cells at any instant precisely
shows the scalar property. When integrated into an analog of
TCM’s learning and retrieval mechanisms, the model gener-
ates a prediction of the immediate future that reflects prior
learning experiences. Rather than developing a detailed model
of behavior, the focus of this paper will be on describing the
qualitative features of the proposed timing mechanism.
However, we do demonstrate that a simple behavioral model
derived from this prediction qualitatively exhibits the Weber
law property at the behavioral level.

We start with a brief description of the encoding and
retrieval mechanisms of TCM. Following that, we construct
the timing mechanism and discuss its neural representation.
Finally, we integrate the timing mechanism with an analog of
the learning and retrieval rules of TCM to qualitatively account
for behavioral aspects of timing observed in classical condi-
tioning experiments.

2. TCM

The initial goal of TCM was to account for the recency and
contiguity effects observed in episodic recall tasks. The
recency effect refers to the finding that, all other things
being equal, memory is better for more recently experienced
information. The contiguity effect refers to the finding that, all
other things being equal, items experienced close together in
time become associated such that when one comes to mind it
tends to bring the other to mind as well (Kahana et al., 2008).
The basic idea of TCM is that when a sequence of stimuli is
presented successively, each stimulus is associated with a
gradually-varying context state. Any two stimuli that have
been experienced in close temporal proximity, though not
directly associated, are indirectly linked as a consequence of
associations to similar contexts.

The architecture of TCM can be formalized in terms of a
two layer network comprised of a stimulus layer and a context
layer with bidirectional connections between them as shown
in Fig. 1. Each node in the stimulus layer denoted by f
corresponds to a unique stimulus. The external input drives
the activity in this layer. At any instant, only the specific node
corresponding to the stimulus being perceived is active in this
layer. Each of these nodes can be viewed as a distributed set of
neurons and different nodes could potentially share some
neurons. But we assume this overlap to be sparse; for
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