
J. Parallel Distrib. Comput. 97 (2016) 1–10

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Fair synchronization✩

Gadi Taubenfeld
The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel

h i g h l i g h t s

• We define a new important synchronization problem – called fair synchronization – for concurrent programming.
• We present the first fair synchronization algorithm for n processes.
• We define the notion of a fair data structure and show how to implement such data structures.
• We prove that by composing a fair synchronization algorithm and an unfair lock, it is possible to construct a fair lock.
• We show that n − 1 registers and conditional objects are necessary for solving the fair synchronization problem for n processes.

a r t i c l e i n f o

Article history:
Received 27 August 2015
Received in revised form
28 May 2016
Accepted 16 June 2016
Available online 24 June 2016

Keywords:
Synchronization
Fairness
Concurrent data structures
Non-blocking
Wait-freedom
Locks
Mutual exclusion

a b s t r a c t

Most published concurrent data structures which avoid locking do not provide any fairness guarantees.
That is, they allow processes to access a data structure and complete their operations arbitrarily many
times before some other trying process can complete a single operation. Such a behavior can be prevented
by enforcing fairness. However, fairness requires waiting or helping. Helping techniques are often
complex and memory consuming. Furthermore, it is known that it is not possible to automatically
transform every data structure, which has a non-blocking implementation, into the corresponding data
structure which in addition satisfies a very weak fairness requirement. Does it mean that for enforcing
fairness it is best to use locks? The answer is negative.

We show that it is possible to automatically transfer any non-blocking or wait-free data structure
into a similar data structure which satisfies a strong fairness requirement, without using locks and with
limited waiting. The fairness we require is that no process can initiate and complete two operations on
a given resource while some other process is kept waiting on the same resource. Our approach allows as
many processes as possible to access a shared resource at the same time as long as fairness is preserved.
To achieve this goal, we introduce and solve a new synchronization problem, called fair synchronization.
Solving the new problem enables us to add fairness to existing implementations of concurrent data
structures, and to transform any solution to the mutual exclusion problem into a fair solution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Motivation

Concurrent access to a data structure shared among several
processes must be synchronized in order to avoid interference
between conflicting operations. Mutual exclusion locks are the
de facto mechanism for concurrency control on concurrent
data structures: a process accesses the data structure only

✩ A preliminary version of the results presented in this paper, appeared in
proceedings of the 27th international symposium on distributed computing (DISC
2013), Jerusalem, Israel, October 2013 Taubenfeld (2009).

E-mail address: tgadi@idc.ac.il.

inside a critical section code, within which the process is
guaranteed exclusive access. However, using locks may degrade
the performance of synchronized concurrent applications, as it
enforces processes to wait for a lock to be released.

A promising approach is the design of data structures which
avoid locking. Several progress conditions have been proposed
for such data structures. Two of the most extensively studied
conditions, in order of decreasing strength, are wait-freedom [18]
and non-blocking [20]. Wait-freedom guarantees that every
process will always be able to complete its pending operations in a
finite number of its own steps. Non-blocking (which is sometimes
also called lock-freedom) guarantees that someprocesswill always
be able to complete its pending operations in a finite number of its
own steps.

Wait-free and non-blocking data structures are not required
to provide fairness guarantees. That is, such data structures may

http://dx.doi.org/10.1016/j.jpdc.2016.06.007
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.06.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.06.007&domain=pdf
mailto:tgadi@idc.ac.il
http://dx.doi.org/10.1016/j.jpdc.2016.06.007


2 G. Taubenfeld / J. Parallel Distrib. Comput. 97 (2016) 1–10

allow processes to complete their operations arbitrarily many
times before some other trying process can complete a single
operation. Such a behavior may be prevented when fairness is
required. However, fairness requires waiting or helping. Using
helping techniques (without waiting) may impose too much
overhead upon the implementation, and are often complex and
memory consuming. Furthermore, it is known that using registers,
it is not possible to automatically transform every data structure,
which has a non-blocking implementation using registers, into the
corresponding data structure which in addition satisfies a very
weak fairness requirement, without using waiting [38].

Does it mean that for enforcing fairness it is best to use locks?
The answer is negative. We show how any wait-free and any non-
blocking implementation can be automatically transformed into an
implementationwhich satisfies a very strong fairness requirement
without using locks and with limited waiting.

We require that no beginning process can complete two
operations on a given resource while some other process is kept
waiting on the same resource. Our approach allows as many
processes as possible to access a shared resource at the same
time as long as fairness is preserved. To achieve this goal, we
introduce and solve a new synchronization problem, called fair
synchronization. Solving the fair synchronization problem enables
us to add fairness to existing implementations of concurrent data
structures, and to transform any solution to the mutual exclusion
problem into a fair solution.

Fair synchronization

The fair synchronization problem is to design an algorithm
that guarantees fair access to a shared resource among a number
of participating processes. Fair access means that no process can
access a resource twice while some other process is kept waiting.
There is no limit on the number of processes that can access a
resource simultaneously. In fact, a desired property is that asmany
processes as possible will be able to access a resource at the same
time as long as fairness is preserved.

It is assumed that each process is executing a sequence of
instructions in an infinite loop. The instructions are divided into
four continuous sections: the remainder, entry, fair and exit.
Furthermore, it is assumed that the entry section consists of two
parts. The first part, which is called the doorway, is fast wait-
free: its execution requires only a (very small) constant number of
steps and hence always terminates; the second part is a waiting
statement: it includes (at least one) loop with one or more
statements. Like in the case of the doorway, the exit section is also
required to be fast wait-free. A waiting process is a process that
has finished its doorway code and reached the waiting part of its
entry section. A beginning process is a process that is about to start
executing its entry section.

A process is enabled to enter its fair section at some point in
time, if sufficiently many steps of that process will carry it into the
fair section, independently of the actions of the other processes.
That is, an enabled process does not need to wait for an action by
any other process in order to complete its entry section and enter
its fair section, nor can an action by any other process prevent it
from doing so.

The fair synchronization problem is to write the code for the
entry and the exit sections in such a way that the following three
basic requirements are satisfied.
• Progress: In the absence of process failures and assuming that a

process always leaves its fair section, if a process is trying to enter
its fair section, then some process, not necessarily the same one,
eventually enters its fair section.
The terms deadlock-freedom and livelock-freedom are used in
the literature for the above progress condition, in the context of
the mutual exclusion problem.

• Fairness: A beginning process cannot execute its fair section
twice before a waiting process completes executing its fair and
exit sections once. Furthermore, no beginning process can become
enabled before an already waiting process becomes enabled.

It is possible that a beginning process and a waiting process
will become enabled at the same time. However, no beginning
process can execute its fair section twice while some other
process is kept waiting. The second part of the fairness
requirement is called first-in-first-enabled. The term first-in-
first-out (FIFO) fairness is used in the literature for a slightly
stronger condition which guarantees that no beginning process
can pass an already waiting process. That is, no beginning
process can enter its fair section before an already waiting
process does so.

• Concurrency: All the waiting processes which are not enabled
become enabled at the same time.

It follows from the progress and fairness requirements that all
the waiting processes which are not enabled will eventually
become enabled. The concurrency requirement guarantees that
becoming enabled happens simultaneously, for all the waiting
processes, and thus it guarantees that many processes will be
able to access their fair sections at the same time as long as
fairness is preserved. We notice that no lock implementation
may satisfy the concurrency requirement.

Together the progress and fairness requirements imply that also
the following property holds: In the absence of process failures and
assuming that a process always leaves its fair section, if a process
is trying to enter its fair section, then this process, eventually
enters its fair section. The term starvation-freedom is used in the
literature for the above progress condition, in the context of the
mutual exclusion problem.

The processes that have already passed through their doorway
can be divided into two groups. The enabled processes and those
that are not enabled. It is not possible to always have all the
processes enabled due to the fairness requirement. All the enabled
processes can immediately proceed to execute their fair sections.
The waiting processes which are not enabled will eventually
simultaneously become enabled, before or once the currently
enabled processes exit their fair and exit sections.

The concurrency requirement is a special case of a set of
conditions, recently introduced in [38], which are intended to
capture the ‘‘amount of waiting’’ of processes in asynchronous
concurrent algorithms. These new conditions can be described as
follows. As already explained, a process is enabled, if by taking
sufficiently many steps it will be able to complete its operation,
independently of the actions of the other processes. A step is an
enabling step, if after executing that step at least one process
which was disabled becomes enabled. For a given k ≥ 0, the k-
waiting progress condition guarantees that every process that has
a pending operation, will always become enabled once at most k
enabling steps have been executed. The concurrency requirement
is the same as requiring that the fair synchronization problem
satisfies 1-waiting.

We observe that the stronger FIFO fairness requirement, the
progress requirement and concurrency requirement cannot be
mutually satisfied (Section 8). Fair Synchronization is a deceptive
problem, and at first glance it seems very simple to solve. The
only way to understand its tricky nature is by trying to solve it.
We suggest the readers to try themselves to solve the problem,
assuming that there are only three processes which communicate
by reading and writing shared registers.



Download English Version:

https://daneshyari.com/en/article/432639

Download Persian Version:

https://daneshyari.com/article/432639

Daneshyari.com

https://daneshyari.com/en/article/432639
https://daneshyari.com/article/432639
https://daneshyari.com

