J. Parallel Distrib. Comput. 93-94 (2016) 1-9

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Read/write shared memory abstraction on top of asynchronous

@ CrossMark

Byzantine message-passing systems”

Damien Imbs?, Sergio Rajsbaum ¢, Michel Raynal >“*, Julien Stainer

d

2 Department of Mathematics, Bremen University, Germany

b Institut Universitaire de France, France

€ IRISA, Université de Rennes, 35042 Rennes, France

4 Distributed Programming Lab, EPFL, Lausanne, Switzerland

¢ Instituto de Matemdticas, UNAM, Mexico

HIGHLIGHTS

o First Byzantine-rrsilient read/write memory.
e Introduction of new concurrency objects.

e An impossibility result.

ARTICLE INFO

ABSTRACT

Article history:

Received 26 August 2015
Received in revised form

11 February 2016

Accepted 28 March 2016
Available online 6 April 2016

Keywords:

Approximate agreement
Asynchronous message-passing system
Atomic read/write register

Broadcast abstraction

This paper is on the construction and use of a shared memory abstraction on top of an asynchronous
message-passing system in which up to t processes may commit Byzantine failures. This abstraction
consists of arrays of n single-writer/multi-reader atomic registers, where n is the number of processes.
These registers enable Byzantine tolerance by recording the whole history of values written to each one of
them. A distributed algorithm building such a shared memory abstraction is first presented. This algorithm
assumest < n/3, whichis shown to be a necessary and sufficient condition for such a construction. Hence,
the algorithm is resilient-optimal.

Then the paper presents distributed objects built on top of this read/write shared memory abstraction,
which cope with Byzantine processes. As illustrated by these objects, the proposed shared memory
abstraction is motivated by the fact that, for a lot of problems, algorithms are simpler to design and prove
correct in a shared memory system than in a message-passing system.

Byzantine process

Distributed computing
Message-passing system

Quorum

Reliable broadcast

Reliable shared memory
Single-writer/multi-reader register
t-Resilience

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Distributed computing and abstraction: Distributed computing
occurs when a set of sequential processes (sometimes called nodes,
processors, processes, agents, sensors, etc.) cooperate to solve a
problem. If processes do not cooperate, the system is no longer a

* A preliminary version of the results presented in this paper appeared in the
proceedings of the 18th International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2014) (Imbs et al., 2014, [10]).

* Corresponding author at: IRISA, Université de Rennes, 35042 Rennes, France.

E-mail address: raynal@irisa.fr (M. Raynal).

http://dx.doi.org/10.1016/j.jpdc.2016.03.012
0743-7315/© 2016 Elsevier Inc. All rights reserved.

distributed system. Hence, a distributed system has to provide the
processes with communication and agreement mechanisms.

Understanding and designing distributed applications is not an
easy task [3,15,24-26]. This is because each process is a physically
distinct entity that has only a partial knowledge of the ongoing
computation. No process can see the global state of the system.
More precisely, as processes are geographically localized at distinct
places, distributed applications have to cope with the uncertainty
created by asynchrony and failures. A main difficulty is that it
is impossible to distinguish a crashed process from a very slow
process in an asynchronous system prone to process crashes.

http://dx.doi.org/10.1016/j.jpdc.2016.03.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.03.012&domain=pdf
mailto:raynal@irisa.fr
http://dx.doi.org/10.1016/j.jpdc.2016.03.012

2 D. Imbs et al. / . Parallel Distrib. Comput. 93-94 (2016) 1-9

As in sequential computing, a common approach to facilitate
the design of distributed applications consists in designing
appropriate abstractions. The fundamental paper [1] presents the
first asynchronous fault-tolerant abstraction of shared memory
on top of a message passing system. While designing distributed
applications in either of these models is difficult, it is easier in
shared-memory systems, where processors have a more global
view of the system. Indeed, this paper substantially impacted both
the theory and the practice of distributed systems.

The simulation of [1] shows that there is no fundamental dis-
tinction between message passing and shared memory compu-
tation. However, this simulation of shared memory in a message
passing system is tolerant of crash (unexpected halting) failures
only. In recent years it has become more and more important to
design systems that tolerate arbitrary, even malicious process fail-
ures. The goal of this paper is to show that it is possible to have an
emulation of shared memory on top of a message passing system,
even in such difficult conditions.

Byzantine behavior: A process has a Byzantine behavior when
it arbitrarily deviates from its intended behavior; it then commits
a Byzantine failure. This bad behavior can be intentional or
simply the result of a combination of hardware and/or software
errors that altered the behavior of a process in an unpredictable
way. Let us notice that process crashes and communication
omissions, define a strict subset of Byzantine failures. This
failure type was initially studied in the context of synchronous
distributed systems (e.g., [14,23,25]), and then investigated in
the context of asynchronous ones (e.g., [3,15,24]). Most of the
early research considers (synchronous or asynchronous) message-
passing systems, and mainly addresses agreement problems, such
as consensus and total order broadcast. Only recently general task
solvability results have appeared [19,20,27].

Content of the paper: The contribution of this paper is the
definition of a shared memory composed of atomic registers in the
context of Byzantine processes, and the design of an algorithm that
builds such a shared memory on top of an asynchronous message-
passing system where up to t processes may be Byzantine. We
introduce a technique to achieve this simulation, in terms of h-
registers (h standing for “history”). These registers differ from
classical registers in that each read returns the complete history
of writes to the registers. This allows preventing a malicious
process from overwriting a previously written value letting correct
processes believe it wrote it only once. This t-resilient shared
memory is made up of n single-writer/multi-reader (SWMR)
atomic h-registers (one per process). The paper also shows that
t < n/3is a necessary and sufficient requirement for such a
construction.

The threshold of t < n/3 for the existence of a construction of
a shared memory on top of an asynchronous Byzantine message-
passing system quantifies the inherent cost of moving from
tolerating crash failures to tolerating arbitrary failures. In the
case of crash failures, it is possible to construct an atomic shared
memory on top of an asynchronous message-passing system if and
only if t < n/2, where t is the largest number of processes that
may crash [1]. Interestingly, the t < n/3 requirement is the same
as the one for solving consensus in both Byzantine synchronous
systems [14] and Byzantine asynchronous systems (enriched with
an appropriate oracle such as a common coin) e.g., [6,21,22].

To show the benefit of the previous construction to obtain
easy solutions to distributed computing problems, that run on a
Byzantine message passing system, the article presents two simple
shared memory algorithms, which are pretty simple, one solving
the “one-shot write-snapshot” problem, the other one solving
the “correct-only” agreement problem (a weakened version of
the consensus problem), respectively. Both illustrate how one can
design algorithms that tolerate crash failures and use them almost

directly on top of the h-register abstraction to obtain Byzantine-
tolerant solutions running of a message-passing system.!

As shown by these examples, the important feature of the
proposed shared memory abstraction lies in the fact that it
prevents Byzantine processes from corrupting synchronization
among the correct processes. A Byzantine process can create
inconsistency only on the values it writes, but any two correct
processes see the same sequence of written values.

Related work: This paper is on the construction of a shared
memory (atomic registers) on top of an asynchronous message-
passing system where processes may exhibit a Byzantine behavior.
A related active research area concerns the construction of
Byzantine-tolerant disk storage (e.g., [7,12,16-18]). The focus is
on registers built on top of replicated disks (servers), which are
accessed by clients, and where disks and clients may exhibit
different type of failures (e.g., [2]). In these client/server models,
clients communicate only with servers and vice versa.

The reason why different types of failures are addressed in
[2,12] comes from the fact that these papers consider “classical”
read/write registers, namely, a register may be modified any num-
ber of times, and each read must return the last value that was
written. In this context, a Byzantine client can overwrite a value
it has previously written, and trick a correct client into believing
that it wrote only once. To prevent this bad scenario, [12] consid-
ers clients that can fail only by crashing, while [2] restricts clients
to be “semi-Byzantine”: they can issue a bounded number of faulty
writes, but otherwise have to respect the code of their algorithm.

Roadmap: The paper is composed of six sections. Section 2
introduces the underlying Byzantine asynchronous message-
passing model. Section 3 defines the notion of Byzantine-tolerant
atomic read/write registers, and presents an algorithm that
builds such registers on top of the basic Byzantine asynchronous
message-passing model. This section shows also thatt < n/3
is a necessary and sufficient requirement for such a construction.
Then, Section 4 and presents two simple algorithms that solve
distributed computing problems on top of Byzantine-tolerant
atomic registers. Finally, the last section concludes the paper.

2. Computation model, reliable broadcast abstraction, and two
quorum properties

2.1. Computation model

2.1.1. Computing entities

The system is made up of a set IT of n sequential processes,
denoted p1, p2, ..., pn. These processes are asynchronous in the
sense that each process progresses at its own speed, which can be
arbitrary and remains always unknown to the other processes.

2.1.2. Communication model

The processes cooperate by sending and receiving messages
through bi-directional channels. The communication network is a
complete network, which means that each process p; can directly
send a message to any process p; (including itself). It is assumed
that, when a process receives a message, it can unambiguously
identify its sender. Each channel is reliable (no loss, corruption, or
creation of messages), but asynchronous (while the transit time of
each message is finite, there is no upper bound on message transit
times). In each channel, messages are not necessarily received in
the order in which they were sent. Moreover, Byzantine processes
are not prevented from reading all messages and reordering them.

1 The interested reader can find a more involved example that solves
multidimensional approximate agreement on top of the t-resilient shared memory
abstraction in [10,11]. This algorithm can be seen as an adaptation (to a Byzantine
read/write shared memory system) of the algorithm described in [19], which solves
the same problem “directly” on top of an asynchronous Byzantine message-passing
system.

Download English Version:

https://daneshyari.com/en/article/432650

Download Persian Version:

https://daneshyari.com/article/432650

Daneshyari.com

https://daneshyari.com/en/article/432650
https://daneshyari.com/article/432650
https://daneshyari.com

