J. Parallel Distrib. Comput. 93-94 (2016) 87-101

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Data-aware task scheduling for all-to-all comparison problems in
heterogeneous distributed systems

@ CrossMark

Yi-Fan Zhang, Yu-Chu Tian*, Colin Fidge, Wayne Kelly

School of Electrical Engineering and Computer Science, Queensland University of Technology (QUT), GPO Box 2434, Brisbane QLD 4001, Australia

HIGHLIGHTS

Abstraction of all-to-all comparison computing pattern with big data sets.

Formulation of all-to-all comparisons in distributed systems as a constrained optimization.
Data-aware task scheduling approach for solving the all-to-all comparison problem.
Metaheuristic data pre-scheduling and dynamic task scheduling in the approach.

ARTICLE INFO ABSTRACT

Article history:

Received 25 October 2015
Received in revised form

14 February 2016

Accepted 14 April 2016
Available online 25 April 2016

Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant
for various applications. Previous efforts to implement distributed all-to-all comparison frameworks
have treated the two phases of data distribution and comparison task scheduling separately. This leads
to high storage demands as well as poor data locality for the comparison tasks, thus creating a need
to redistribute the data at runtime. Furthermore, most previous methods have been developed for
homogeneous computing environments, so their overall performance is degraded even further when they
are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-
aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed
systems. The approach formulates the requirements for data distribution and comparison task scheduling
simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and
dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the
problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of
data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the
overall computation time. It also reduces data storage requirements across the network. The effectiveness
of the approach is demonstrated through experimental studies.

© 2016 Elsevier Inc. All rights reserved.

Keywords:

Distributed computing
All-to-all comparison
Data distribution

Task scheduling

1. Introduction performance degradation may result from inappropriate data dis-

tribution, poor data locality for computing tasks, and unbalanced

The size of data sets has grown rapidly across a variety of sys-
tems and applications [2,15]. Distributed computing using a dis-
tributed data storage architecture has been widely applied in data
intensive and computationally intensive problems due to its cost
effectiveness, high reliability and high scalability [4,14,21]. It de-
composes a single large computing problem into multiple smaller
ones and then schedules those smaller ones to distributed worker
nodes. Its performance largely depends on the data distribution,
task decomposition, and task scheduling strategies. A significant

* Corresponding author.
E-mail address: y.tian@qut.edu.au (Y.-C. Tian).

http://dx.doi.org/10.1016/j.jpdc.2016.04.008
0743-7315/© 2016 Elsevier Inc. All rights reserved.

computational loads among the distributed worker nodes. An inap-
propriate data distribution consumes excessive storage space. Poor
data locality means that the data required by a particular worker
is unavailable locally, thus creating overheads associated with re-
arranging data between the nodes at runtime. Load imbalances
lengthen the overall computation time due to the need to wait
for the slowest nodes. Thus, innovative approaches are required to
deal with all these issues for distributed computing of large-scale
problems with distributed data.

All-to-all comparison is a type of computing problem with a
unique pairwise computing pattern [18,19,33]. It involves compar-
ing two different data items from a data set for all possible pairs of
data items. It is widely found in various application domains such

http://dx.doi.org/10.1016/j.jpdc.2016.04.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.008&domain=pdf
mailto:y.tian@qut.edu.au
http://dx.doi.org/10.1016/j.jpdc.2016.04.008

88 Y.-F. Zhang et al. / J. Parallel Distrib. Comput. 93-94 (2016) 87-101

as bioinformatics, biometrics and data mining. For example, in data
mining, clustering algorithms use all-to-all comparisons to derive
a similarity matrix to characterize the similarities between objects.
For instance, in a study of music information retrieval, 3090 pieces
of music were pairwise compared to determine the similarity be-
tween any pair of items [3].

Existing solutions for general distributed computing have been
adapted to distributed processing of all-to-all comparison prob-
lems. They generally consider data distribution and comparison
task scheduling in two independent phases. There are two rep-
resentative ideas for data distribution: (1) to copy all data to all
nodes [1,11,24]; and (2) to distribute data by using the Hadoop
computing framework [28,6]. While considering data distribution
and task scheduling in two independent phases simplifies the sys-
tem’s design, significant weaknesses are caused by the lack of co-
ordination between the two phases, leading to poor performance
of the overall distributed computation. This is in addition to the
inherent drawbacks of these two approaches for all-to-all compar-
ison problems, as is discussed below in Section 2.

To solve these problems, here we present a data-aware
task scheduling approach for distributed computation of large-
scale, all-to-all comparison problems with distributed storage in
heterogeneous distributed systems. Specific contributions of this
work include:

1. A formalization of distributed all-to-all comparison computa-
tions as a constrained optimization problem, which considers
data distribution and task scheduling simultaneously;

2. A metaheuristic pre-scheduling strategy, as a solution to the
constrained optimization requirement, for task-oriented data
distribution with consideration of storage usage, data locality,
and load balancing; and

3. Runtime-scheduling strategies, as a refinement to the pre-
scheduling strategy, for static and dynamic scheduling of
comparison tasks, with consideration of the computing power
of the individual computing nodes in heterogeneous distributed
systems.

The paper is organized as follows. Section 2 discusses related
work and motivations. Section 3 describes all-to-all comparison
problems and their challenges. This is followed by a formalization
of distributed all-to-all comparisons as a constrained optimiza-
tion problem in Section 4. Then, metaheuristic pre-scheduling and
runtime-scheduling strategies are presented in Sections 5 and 6,
respectively. The strategies are further analysed in Section 7. Sec-
tion 8 presents experimental results. Finally, Section 9 concludes
the paper.

2. Related work and meotivations

All-to-all comparison problems occur in various application
domains. However, the principle of solving all these problems is
the same. A few typical methods are reviewed below.

A brute-force solution to all-to-all comparison problems copies
all data onto each node in a distributed system [24,23,32].
Moretti et al. [24] designed a computing framework for all-to-all
comparison problems on campus grids. To give each comparison
task the required data, they proposed a spanning tree method
to deliver the data to every node efficiently. Macedo et al. [23]
presented an MPI/OpenMP mixed parallel strategy to run the
DIALIGN-TX algorithm in heterogeneous multi-core clusters. They
focused on comparing different task allocation policies to show an
appropriate choice. Xiao et al. [32] optimized the BLAST algorithm
in a GPU-CPU mixed heterogeneous computing system. Their
implementation was measured to achieve a six-fold speed-up for
the BLAST algorithm. For other big data computing problems other

than all-to-all comparisons, distributing all data everywhere was
also a widely used data strategy [1].

Distributing all data to all nodes has its advantages and
disadvantages. When the data sets are distributed everywhere,
scheduling any comparison task to any node will achieve
perfect data locality, and load balancing becomes straightforward.
However, there are also obvious and major drawbacks. (1) The
brute-force replication of data results in worst-case storage usage,
the longest time consumption for data transmission, and the
highest cost of network communications. For example, a typical
all-to-all comparison problem presented by Hess et al. [13] needs
to process 268 GB of cow rumen metagenome data, and copying
all the data to each node pushes the limits of the available storage
resources. In an experiment by Das et al. [9], the average time for
deploying 10 GB data sets within a cluster of 14 worker nodes
and a 10 Mbps network took nearly 150 min. This long time for
data transmission has a significant negative effect on the overall
performance of the computing problem. (2) Even if all the data
can be duplicated efficiently, much of the data stored in the nodes
will never be used in actual comparison tasks, wasting the storage
resources considerably. (3) These two drawbacks become even
more evident and serious for large-scale problems with big data
sets. As all-to-all comparison is a type of combinatorial problem,
the complexity of processing big data sets increases exponentially
with the size of the data.

Hadoop is a widely-used distributed computing framework for
big data problems, based on the MapReduce computing pattern.
Therefore, recent attempts have been made to implement domain-
specific all-to-all comparison applications using Hadoop [28,6]. Us-
ing Hadoop, CloudBurst [28] parallelizes a specific read-mapping
algorithm optimized for mapping next-generation sequence data
to the human genome and other reference genomes. In a test us-
ing a homogeneous cluster of 24 processors, CloudBurst has been
shown to achieve an up to 30 times speed-up compared to ex-
ecution on a single core. Similarly, MRGIS [6] is a parallel and
distributed computing platform implemented in Hadoop for geoin-
formatics applications. A Hadoop environment with 32 homoge-
neous worker nodes has been investigated for testing the efficiency
of the MRGIS system [6]. These solutions benefit from Hadoop’s
advantages such as scalability, redundancy, automatic monitoring,
and distributed computing with simple application programming
interfaces (APIs). However, they are domain-specific, and thus not
suitable for general all-to-all comparison problems with big data
sets from different application domains. Therefore, they were not
used as benchmark examples in our experiments to evaluate the
performance of our solution for general all-to-all comparison prob-
lems.

While Hadoop is widely used, it is inefficient for large-scale all-
to-all comparison problems for two reasons. (1) Hadoop is based
on the MapReduce computing pattern, which is fundamentally
different from the pairwise comparison pattern needed in all-
to-all comparison problems. In MapReduce problems, each data
item can be processed separately and there is no requirement
for pairwise data locality. In Hadoop data items are randomly
distributed with a fixed number of replications (the default is 3).
Hadoop’s data distribution strategy does not consider the data
locality requirements for comparison tasks. A naive attempt
to use Hadoop’s data distribution for all-to-all comparisons
causes a need to redistribute the data between the nodes at
runtime [33]. In Qiu et al’s experiments [27], Hadoop was
shown to execute inefficiently for all-to-all comparisons due to
frequent switches between ‘map’ and ‘communication’ activities.
(2) Hadoop does not address load balancing directly, which is
also a key requirement for improved performance of the overall
execution time in all-to-all comparison problems. This becomes
most evident in heterogeneous distributed systems, in which

Download English Version:

https://daneshyari.com/en/article/432656

Download Persian Version:

https://daneshyari.com/article/432656

Daneshyari.com

https://daneshyari.com/en/article/432656
https://daneshyari.com/article/432656
https://daneshyari.com

