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h i g h l i g h t s

• Presents a scalable algorithm for optimizing sequences of functions in parallel.
• Develops an objective function for modeling nonlinear dynamical system optimization.
• Demonstrates three real-world applications and analyzes the results.
• Performance shows that the algorithm benefits from heterogeneous HPC clusters.
• Two distributed variants of the algorithm are proposed and evaluated.
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a b s t r a c t

Nonlinear dynamical systemoptimization problems exist inmany scientific fields, ranging from computer
vision to quantitative finance. In these problems, the underlying optimized parameters exhibit a certain
degree of continuity, which can be formulated as a discrete sequence of nonlinear functions. Traditionally,
such problems are either solved by ad-hoc algorithms or via independent optimization of the underlying
functions. The former solutions are difficult to define and develop, requiring expertise in the field, while
the latter approach does not take advantage of the inherent sequential properties of the functions. This
paper presents a parallel spline-based algorithm for nonlinear optimization of function sequences, with
emphasis on dataset sequences that represent dynamically evolving systems. The presented algorithm
provides results that are more coherent with fewer evaluations than independent optimization of the
sequence functions.We elaborate on the heuristic approach, themotivation behind using splines tomodel
dynamical systems, and the various tiers of concurrency built into the algorithm. Furthermore, we present
two distributed variants of the algorithm and compare their convergence with the serial version. The
performance of the algorithm is demonstrated on benchmarks and real-world problems in audio signal
decomposition, small angle X-ray scattering analysis, and video tracking of arbitrary objects.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Large-scale nonlinear optimization problems are recently gain-
ing importance in the scientific community. One subset of these
problems focuses on modeling dynamical systems. In this sub-
set, the objective function contains an additional continuous
dimension (e.g. time). Since real-world experiments consist of dis-
crete observations, the problem can be formulated as a sequence of
related functions to optimize. Examples of nonlinear dynamical
system problems include analytical mechanics and physics simu-
lations [23,25]; sensor-based (e.g. GPS) navigation [35]; nonlinear
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econometric models in financial time series [52]; and other time-
evolving processes such as phase transitions in thermodynamic
systems.

Current solutions to sequential problems are often area-
specific [41,43,13,45], allowing little to no flexibility on the
structure of the data (i.e., algorithms that operate on videos will
usually not performwell on audio waves); do not leverage parallel
anddistributed systems; and are not always robust to various input
conditions, such as noise. Furthermore, devising such solutions
requires deep understanding of the research area, with which
specifically-crafted heuristics are added to the algorithms. On the
other hand, nonlinear modeling is simpler and only requires basic
knowledge of the underlying process.

The importance of function sequence optimization stems from
the fact that it estimates models more efficiently by using less
parameters and assuming continuity. Moreover, the results of
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optimized long sequences (e.g., a month of video footage) can
be automatically subdivided to segments using the underlying
parameters [24,47,4], a process which aids in finding anomalies
and the critical points of the dynamical system.

Traditional optimization of each sequence function indepen-
dently does not guarantee the coherency of the solution with
respect to the sequence, nor produce well-informed parameter es-
timates based on the continuous properties of the system. This
results in an unnecessarily large amount of function evaluations,
which may be costly for some problems (e.g., when using numer-
ical integration). More importantly, such algorithms are not scal-
able with respect to the length of the sequence, with which the
memory consumption can grow linearly and sometimes quadrati-
cally, depending on the method.

In this paper, we design a novel algorithm that we call Discrete
Sequence Optimization (DSO). This algorithm provides a gener-
alized solution to constrained and unconstrained optimization of
nonlinear function sequences. As we shall show, DSO converges to
better solutions with less evaluations when the underlying func-
tions represent a dynamical system.

Parallel and distributed nonlinear optimization algorithms
generally provide better results than their sequential counter-
parts [44] by evaluating many estimates simultaneously to evade
sub-optimal local convergence. The DSO algorithm is inherently
parallel and can be distributed across many computing nodes,
essentially capable of achieving maximal performance on HPC
clusters with multi-GPU machines. It is designed with three tiers
of concurrency: data parallelism, task parallelism, and distributed
computing. For the distributed computing tier, two different vari-
ants of DSO are presented in this paper. These variants utilize dis-
tributed global optimization principles to achieve more accurate
results than the sequential version.

We also show that the memory complexity of DSO is indepen-
dent of the length of the sequence. This is especially important for
solving large-scale optimization problems onmassively parallel ar-
chitectures, which typically contain a limited amount of RAM and
no memory swapping capabilities.

To demonstrate the effectiveness of DSO, we present two
benchmarks and three real-world applications for sequence opti-
mization. These applications cover a wide range of research areas,
optimizing audio signals for source instrument decomposition, an-
alyzing complex fluid X-ray scattering datasets, and fitting image
sequences to track arbitrary objects in videos.

The paper is organized as follows. Section 2 depicts the
theoretical background for the algorithm, used throughout the
paper. Section 3 presents DSO in detail, along with its distributed
counterparts. Case studies that demonstrate the accuracy of DSO
are presented in Section 4, and various performance parameters
of the algorithm are evaluated in Section 5. Related work and
conclusions are discussed in Sections 6 and 7 respectively.

2. Background

This section provides theoretical background for the algorithm
presented in this paper.

2.1. Statement of the problem

The problem of unconstrained nonlinear dynamical system
optimization can be formally defined as follows. Given an objective
function f : Rd+1

→ R, denoted as f (τ , x) where x ∈ Rd is
some parameter vector, f is defined in the range τ ∈ [a, b] and
smooth with respect to τ ; let g be a scalarization function, which
quantifies the values of f in the range τ ∈ [a, b] to a real value; find

a continuously differentiable parameter function X∗(τ ) : R → Rd

that satisfies:

X∗
= argmin

X:R→Rd
g (f , X, a, b) .

A specific instance of this problem, where g(f , X, a, b) ≡ b
a f (τ , X(τ ), X′(τ ))dτ , solves the Euler–Lagrange equation [16],

which is prominently used in analytical mechanics.
This paper focuses on the discrete version of this problem,

finding the parameter matrix X∗
∈ Rm×d that satisfies the

equation:

X∗
= argmin

X∈Rm×d
g

 f1

X1,∗


...

fm

Xm,∗


 , (1)

where ft : Rd
→ R, t ∈ [m] is a discrete sequence of m related

functions, exhibiting sequential continuity (see below); X∗ is se-
quentially continuous along its rows; and Xt,∗ is equivalent to row
t of X .

Since optimizing the ft functions independently can produce in-
coherent results with respect to the sequence, it is necessary to
find an objective function g : Rm

→ R that constrains the pa-
rameter values along the sequence in order to enforce continuity.
To address this issue, we define a metric for sequential continuity
as the discrete version of function smoothness, using finite differ-
ences instead of derivatives. A parameter sequence is continuous if
the sum of its absolute second-order differences, ∥Ẍt∥ (defined in
Appendix A.1) for 1 < t < m, is minimal. The scalarization func-
tion g is therefore given by:

g(f⃗ , X, λ) ≡

m
t=1

ft

Xt,∗


+ λ

m−1
t=2

d
i=1

|ciẌt,i|, (2)

where c ∈ Rd is a fixed non-negative vector that normalizes the
dimensions of the parameters, and λ ≥ 0 is a regularization pa-
rameter for the second term. In this paper, the two parts of Eq. (2)
are referred to as the data and smoothness terms respectively. The
second term functions as an ℓ1-norm based regularization, applied
via Lagrangian relaxation [27]. This technique follows the principle
of Tikhonov regularization [50], adding the sequential continuity
constraint to the minimized function directly.

2.2. Constrained sequence optimization

The respective constrained problem of discrete sequence
optimization is defined by:

X∗
= argmin

X∈Rm×d
g(f⃗ , X, λ),

s.t. X ∈ Cg ∧ ∀t∈[m] : Xt,∗ ∈ Cℓ,

where Cg ⊂ Rm×d is the feasible subset of the result matrix, repre-
senting global constraints; and Cℓ ⊂ Rd is the feasible subset of in-
dividual results, representing local constraints. Global constraints
enforce sequential coherency of the optimization results, whereas
local constraints restrict the optimization of each function inde-
pendently.

For example, linear box constraints, which are extensively used
throughout the paper, can be defined by Cg =


x′

∈ Rdm
: Agx′

≤ bg

and Cℓ =


x ∈ Rd

: Ax ≤ b

, where n, k are the number of

global and local constraints respectively, Ag ∈ Rn×dm, bg ∈ Rn, x′ is
the vector representation of X (having Xi,j = x′

id+j), A ∈ Rk×d and
b ∈ Rk.
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