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a b s t r a c t

Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods applied to solvers for Partial Differential
Equations with random input data are proved to exhibit intrinsic failure resilience. Sufficient conditions
are provided for non-recoverable loss of a random fraction of MC samples not to fatally damage the
asymptotic accuracy versus work of a MC simulation. Specifically, the convergence behavior of MLMC
methods onmassively parallel hardwarewith runtime faults is analyzedmathematically and investigated
computationally. Our mathematical model assumes node failures which occur uncorrelated of MC
sampling andwith general sample failure statistics on the different levels andwhich also assume absence
of checkpointing, i.e., we assume irrecoverable sample failures with complete loss of data. Modifications
of the MLMC with enhanced resilience are proposed. The theoretical results are obtained under general
statistical models of CPU failure at runtime. Particular attention is paid to node failures with so-called
Weibull failure models on massively parallel stochastic finite volume computational fluid dynamics
simulations are discussed. We discuss the resilience of massively parallel stochastic Finite Volume
computational fluid dynamics simulations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo (MC)methods estimate statisticalmoments of ran-
dom variables (such as means or so-called ‘‘ensemble averages’’)
by sample averages [6]. The goal can, for instance, be to determine
the expected solution of a partial differential equation (PDE) with
random initial or boundary conditions that follow some statisti-
cal law [12–14]. Then, each sample is the solution of the PDE for a
random input (such as, in the context of hyperbolic systems of con-
servation laws, a particular initial/boundary condition). The statis-
tical independence of the input data makes it possible to execute
the simulations corresponding to each sample in parallel. The slow
convergence of Monte Carlo methods (M−1/2 forM draws of input
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data) entails large numbers of samples. This, in turn, implies good
parallel scalability of MC methods to large numbers of processors.
Mostly, the simulations take a similar amount of time such that a
distribution among large numbers of processors with a balanced
load is achieved quite easily. In a parallel setting a serious problem
is to guarantee the statistical independence of the random input
draws (see, e.g., [21]).

Multilevel Monte Carlo (MLMC) methods were recently pro-
posed in [7,12] in order to improve the accuracy versus work. They
can be used for efficient numerical simulations of stochastic ordi-
nary or partial differential equations. Unlike MC methods where
samples are only computed on one discretization, MLMC meth-
ods use a hierarchy of discretization levels hence computations are
done on many different discretizations. Based on the expected so-
lution computed on the coarsest discretization level, the expected
difference from this level to the next finer one is added, until the
finest discretization level is reached. In MLMC methods the ex-
pected difference from two consecutive discretization levels is es-
timatedusing theMCmethod.Hence, in this paper the difference of
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a realization computed on two consecutive discretization levels is
referred to as a MLMC sample of a certain ‘‘level’’. Throughout this
paper, a ‘‘level’’ does, therefore, not denote a discretization level
but a level related to a MLMC sample. Note that the discretization
levels need not be related to a grid hierarchy. MLMC can also be
applied, e.g., to mesh-free Feynman–Kac problems [19,30]. It is by
now known (see, e.g., [2,7,12–14,19]) that under rather general as-
sumptions, MLMC methods converge faster than MC, in terms of
overall computational work, i.e., cumulative execution time. The
cumulative execution time and memory consumption of the com-
putation of samples depend on the levels and differ considerably:
the computation of a MLMC sample of a ‘finer’ level may require
much more compute resources (execution time, memory space,
number of cores) than of a sample of a ‘coarser’ level. The load of
a MLMC simulation is therefore not as easy to balance [27] as in
MC, as there are only few samples on the fine levels. Nevertheless,
in the context of partial differential equations with random inputs,
theMLMCmethod allows the approximation of ensemble averages
of the solution with a complexity analogous to that necessary for
one numerical solution of the deterministic problem on the finest
mesh [2,12].

The present study is based on the following assumptions: (a) in
large scale simulations on emerging, massively parallel computing
platforms processor failures at runtime are inevitable [4,5],
and occur, in fact, with increasing frequency as the number
of processors increases, respectively the quality of processors
decreases; (b) processor failures at runtime can, in general, not be
predicted, but occur randomly and should therefore be modeled
as stochastic processes; (c) processor failures at runtime are not
checkpointed and not recoverable; (d) the algorithm of interest has
redundancy by design in order to ‘‘survive’’ a certain number of
(non-checkpointed) failure events with random arrivals.

Assumptions (c) and (d) exclude a large number of currently
used standard algorithms, for which any loss of data entails
abortion of execution. We mention only standard Gaussian
Elimination with loss of one pivot element. Other algorithms may,
however, tolerate partial loss of data at runtime. We think of
iterative solvers of large, linear systems which may converge even
if one or several iterates are ‘‘lost’’ due to hardware failures and so
satisfy assumption (d); interestingly, assumption (b) implies that
the convergence results of deterministic algorithms for deterministic
problems on random hardware will necessarily be probabilistic in
nature. Here, we consider the case when the algorithm under
consideration is stochastic by design, such as Monte Carlo (MC)
methods. As we argue in the present paper, MC methods, being
probabilistic in nature, are intrinsically fault tolerant: as we prove,
the loss of (a ‘‘subcritical’’ fraction of) information by failed samples
does not render the whole simulation useless as is the case, e.g., in
many matrix computations, such as Gaussian Elimination. MC
samples which were lost due to node failures at runtime can be
repeated since new, independent samples can be generated to
replace the failed ones.

We provide a mathematical argument predicting that the
convergence behavior of MC is not affected substantially if the
failed samples are simply disregarded, provided there are ‘‘not
too many’’ (made precise in the mathematical analysis, and
corroborated in the numerical experiments) of these failures.

Specifically, in the present paper we analyze the performance
of both MC and MLMC PDE solvers in the presence of hardware
failures at runtime. In particular, we investigate the convergence
behavior of these methods if processors fail according to a
stochastic failure model; the presently developed mathematical
analysis accommodates rather general failure models. Naturally,
to arrive at a theory which is amenable to rigorous mathematical
treatment, a number of simplifying assumptions had to be made.
In particular, in our analysis we do not distinguish among different

reasons of processor failure. So, we do not distinguish between
node, program, network, or any other type of failure. We assume
that the complete MC sample is lost if one of the (maybe multiple)
processors fails that are used for its simulation. We disregard all
samples affected by a failure and compute the results with the
‘surviving’ ones.

While in MC all samples are from the (single) finest level (or
grid), MLMC gets its statistics also from samples corresponding to
coarser grids. (The resolution of the finest level is determined by
the required discretization error.) By using information onmultiple
levels MLMC needs much fewer samples on the finest level than
ordinary MC to attain the same quality of answer. MLMC turns
out to be much more efficient than MC. To get the optimal MLMC
convergence rate (with respect to work), it is crucial to choose
properly the numbersMℓ of samples on level ℓ.

In the presence of failures without checkpointing MC samples
on all levels might be irrevocably lost. The larger (in the sense
that they are defined on finer meshes) samples of the finer levels
are more vulnerable than the (larger number of) smaller samples
on the coarser levels. With very high failure rates it might not be
feasible that sufficiently many samples survive on the finer levels.
In general, the error components of faulty levels increase and the
overall convergence rate is reduced.With a sufficiently high failure
rate all samples on a particular level may get lost. In this case, the
attainable error is bounded from below by the discretization error
of that level.

Our main mathematical results are as follows: we prove con-
vergence of MC and MLMC for the first moment (sample average)
provided that sufficiently many samples survive on average. We
compute the effect of failures according to existing failure mod-
els. Numerical experiments of MLMC for hyperbolic PDE’s coupled
with the Weibull failure model validate our theory. We further in-
vestigate the failure resilience of two and three dimensional time-
dependent grid applications, like finite elements, finite differences,
or finite volumes. These results are obtained byMLMC simulations
treating the sample sizesMℓ as random variables.

We also discuss FT issues regardingMPI. In the present standard
MPI-3.0 [15], failure of a single MPI process is fatal for the entire
MLMC simulation. For our approach to work, MPI would have to
be extended by a mechanism to survive losses of MPI processes
at runtime, and continue with the remaining ones. Based on this
paper the proposed fault tolerant MLMCwas implemented [20,30]
using the User Level Failure Mitigation (ULFM) [3], a fault tolerant
version of MPI. We compare the theoretical error bound with the
measured results from this implementation.

The paper is organized as follows: In Sections 2 and 3 we give
error bounds for MC and MLMC, respectively, in the presence of
a statistical loss of samples. In Section 4 we discuss the Weibull
failure model. In Section 5 we conduct a number of numerical
experiments to investigate how convergence is affected by failure.
We consider two and three dimensional problems with different
convergence rates of the PDE solver. We further discuss the
practical applicability of our approach, and outline a possible
procedure if the stochastic failure model is unknown.

2. MC with a random number of samples

We first introduce a fault tolerant MC (FT-MC)method. Starting
from there the fault tolerant technique used in MLMC is derived.

We are interested in the expected value E[X] of a random
variable (RV) X taking values in a Banach space B, on the
probability space (Ω, A , P), with sample space Ω , σ -algebra A

and probability measure P [17]. If the 2nd moments of X exist
the Monte Carlo method can be used to estimate E[X]. Given a
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