
J. Parallel Distrib. Comput. 84 (2015) 51–64

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An integrated approach to workflow mapping and task scheduling for
delay minimization in distributed environments
Daqing Yun a, Chase Qishi Wu b,∗, Yi Gu c

a Department of Computer Science, University of Memphis, Memphis, TN 38152, United States
b Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
c Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN 37132, United States

h i g h l i g h t s

• We study workflow execution dynamics in distributed environments.
• We formulate an optimization problem on workflow mapping and task scheduling.
• We propose an integrated solution to maximize workflow performance.
• The proposed solution is evaluated through simulations and experiments.

a r t i c l e i n f o

Article history:
Received 13 February 2015
Received in revised form
18 June 2015
Accepted 7 July 2015
Available online 17 July 2015

Keywords:
Scientific workflows
Workflow mapping
On-node scheduling
End-to-end delay

a b s t r a c t

Many scientific applications feature large-scale workflows consisting of computing modules that must
be strategically deployed and executed in distributed environments. The end-to-end performance of
such scientific workflows depends on both the mapping scheme that determines module assignment,
and the scheduling policy that determines resource allocation if multiple modules are mapped to the
same node. These two aspects of workflow optimization are traditionally treated as two separated topics,
and the interactions between them have not been fully explored by any existing efforts. As the scale
of scientific workflows and the complexity of network environments rapidly increase, each individual
aspect of performance optimization alone can only meet with limited success. We conduct an in-depth
investigation into workflow execution dynamics in distributed environments and formulate a generic
problem that considers both workflowmapping and task scheduling to minimize the end-to-end delay of
workflows. We propose an integrated solution, referred to as Mapping and Scheduling Interaction (MSI),
to improve theworkflow performance. The efficacy ofMSI is illustrated by both extensive simulations and
proof-of-concept experiments using real-life scientific workflows for climate modeling on a PC cluster.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The processing and analysis of simulation or experimental
datasets generated in next-generation e-Science require the con-
struction and execution of domain-specific workflows in dis-
tributed network environments, such as clusters, grids, or clouds
for collaborative research and discovery [23,33]. Such scientific
workflows typically consist of many interdependent computing
modules,1 and are managed and executed by either special- or

∗ Corresponding author.
E-mail addresses: dyun@memphis.edu (D. Yun), chase.wu@njit.edu (C.Q. Wu),

yi.gu@mtsu.edu (Y. Gu).
1 Workflowmodules are also referred to as tasks/subtasks, activities, stages, jobs,

or transformations in different contexts.

general-purpose workflow engines such as HTCondor/DAGMan
[18,26,20], Kepler [35], Pegasus [42,19], Triana [16], Askalon [24]
and Sedna [45]. In general, a workflow system first assigns com-
ponent modules to a set of networked nodes (i.e. mapping2) in the
deployment phase and then decides the order or priority ofmodule
execution (i.e. scheduling) at runtime.

The workflow mapping problem is well known to be NP-
complete and non-approximable for planar and bipartiteworkflow
graphs [25], and has been extensively investigated in the literature
to minimize the End-to-end Delay (ED) or makespan of a work-

2 Workflow mapping is occasionally referred to as a scheduling problem in the
literature. In this paper, we use the term ‘‘mapping’’ to differentiate it from the
workflow on-node scheduling problem under study within the same framework.

http://dx.doi.org/10.1016/j.jpdc.2015.07.004
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.07.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.07.004&domain=pdf
mailto:dyun@memphis.edu
mailto:chase.wu@njit.edu
mailto:yi.gu@mtsu.edu
http://dx.doi.org/10.1016/j.jpdc.2015.07.004


52 D. Yun et al. / J. Parallel Distrib. Comput. 84 (2015) 51–64

Fig. 1. A simple example illustrating the interactions between mapping and
scheduling.

flow. No matter which mapping scheme is applied, it is often in-
evitable to assign multiple modules to the same node (i.e. node
reuse) for better utilization of limited computing resources, leading
to possible concurrent module execution. In such cases, the node’s
computing resources are generally allocated by kernel-level CPU
scheduling policies, such as the round-robin algorithm to ensure
fine-grained fair-share (FS). Similarly, a network link’s bandwidth
is also fairly shared by multiple independent data transfers that
take place concurrently over the same link through the use of
the widely deployed TCP or TCP-friendly transport methods. Such
system-inherent fair-share scheduling mechanisms could reduce
the development and implementation efforts of workflow sys-
tems, but may not always yield the best workflow performance,
especially in distributed environments. The scheduling effect was
considered in some recent efforts including [52], where a Critical
Path3-based Priority Scheduling (CPPS) algorithm is proposed to im-
prove the end-to-end performance of a workflow under a given
mapping scheme that is initially calculated based on FS scheduling.

Aswell recognized, the performance of scientific workflows de-
pends on both the mapping scheme and the on-node scheduling
policy, which are traditionally treated in two separate realms. As
the scale of scientific workflows and the complexity of network
environments rapidly increase, each individual aspect of perfor-
mance optimization alone can only meet with limited success. In
fact, there exists a certain level of interactions between mapping
and scheduling, which could be exploited to further improve the
end-to-end workflow performance. We shall use a simplified nu-
merical example on a workflow consisting of 6 modules as shown
in Fig. 1 to illustrate how mapping and scheduling can interact
with each other, leading to different end-to-end performances. For
simplicity, we ignore the computational requirement (CR) of the
start/end module (i.e. w0 and w5). The initial mapping scheme
maps modules w1 and w2 to node v1, and maps modules w3 and
w4 to node v2. All the nodes have identical processing power (PP) of
10 units/s.

Under the given mapping scheme in Fig. 1, the execution
dynamics of the entire workflow are shown in Fig. 2 based on FS
scheduling. Along the x-axis, starting from time point 0, it takes 2 s
of fair share betweenw1 andw2 on v1 to finishw2 and then another
3 s of exclusive execution of w1 to finish w1 at time point 5. At this
point,w3 andw4 become ‘‘ready’’. It takes 2 s of fair share between
w3 andw4 on v2 to finishw4 and another 1 s of exclusive execution
of w3 to finish w3 at time point 8. Therefore, the end-to-end delay
based on FS scheduling is 8 s on the critical path: w0 → w1 →

w3 → w5. Based on this FS schedule, by employing a naive on-
node scheduling policy that always executes the critical module
exclusively first in case of resource competition, we can cut down
the end-to-end delay from 8 to 7 s as shown in Fig. 2. However,
this new schedule leads to a different critical path, i.e.w0 → w2 →

w4 → w5. Such a shift of the critical path indicates that the original
mapping scheme computed by any critical path-based mapping

3 The critical path in the context of workflow optimization refers to the longest
path of execution time.

algorithm based on FS scheduling may no longer be the optimal
one, hence requiring reexamining the mapping procedure.

Modern systems and networks provide various mechanisms
to perform resource scheduling that goes beyond the system-
inherent FS scheduling. For example, the allocation of system re-
sources (mainly CPU cycles) on a host among concurrent modules
or jobs could be controlled by assigning different CPU quantum
values through ‘‘nice’’ or ‘‘renice’’ commands or some specialized
tools such as ‘‘CGroups’’ [12] in Linux. Meanwhile, apart from TCP-
based data transfer over default best-effort IP paths, the allocation
of network resources (mainly bandwidths) could also be controlled
on dedicated channels, as exemplified by high-performance net-
workswith the capability of bandwidth reservation [41,32] and the
Internet using QoS technologies such as DiffServ [5], IntServ [8],
RSVP [9], and MPLS [2] to implement fine-grained bandwidth con-
trol. Therefore, it is practically feasible to perform more sophis-
ticated control for module execution and data transfer than the
default FS scheduling to achieve a higher level of workflow per-
formance.

In this paper, we conduct an in-depth investigation into work-
flow execution dynamics and formulate a generic workflow op-
timization problem that considers both workflow mapping and
scheduling. We propose an integrated solution, referred to as
Mapping and Scheduling Interaction (MSI), to optimize workflow
performance. MSI takes an iterative approach to perform the
mapping-scheduling cycle in order to minimize the end-to-end
delay of a distributed workflow. The performance superiority
of the proposed solution is illustrated by extensive simulations
and proof-of-concept experiments using domain-specific scientific
workflows in real network environments.

The rest of this paper is organized as follows. Section 2 conducts
a survey of related work. Section 3 formulates the workflow opti-
mization problem. Section 4 details the design of MSI algorithm.
Section 5 evaluates the algorithm performance through simula-
tions and experiments. Section 6 concludes our work.

2. Related work

We conduct a background survey on workflow optimization,
which has been the focus of research in recent years [21,52,53,15].
Generally, there are two aspects of optimizing distributed tasks to
improve scientific workflow performance: (i) assigning the com-
ponent modules in a workflow to suitable computing resources,
referred to as workflow mapping; and (ii) deciding the execution
order/priority and resource sharing policy among concurrentmod-
ules on computer nodes or processors, referred to as workflow on-
node scheduling. Both aspects have been extensively studied in
various contexts due to their theoretical significance and practical
importance [11,36,14,13,44,38,43,3,10,37].

The existing workflow mapping algorithms can be roughly
classified into the following categories: (i) Graph-based methods
[40,17], which tackle the mapping problem using graph theory.
The subgraph isomorphism has been proven to be NP-complete
and the complexity of graph isomorphism is still unknown;
(ii) List scheduling approaches [30,34], most of which employ a
critical path-based procedure; (iii) Clustering algorithms [7,28],
which assume an unlimited number of processors and thus are not
feasible in reality; (iv) Duplication-based algorithms [1,43],most of
which have a complexity of O(n4) or higher for n nodes; (v) Guided
random search such as genetic algorithms [22,31], which often re-
quire additional efforts to determine an appropriate termination
condition and usually does not have performance guarantee.

In early years when networked resources were still scarce,
workflow modules were typically mapped to tightly coupled ho-
mogeneous systems such as multiprocessors [25,51,28,34]. As dis-
tributed platforms such as clusters, grids, and clouds are rapidly



Download English Version:

https://daneshyari.com/en/article/432666

Download Persian Version:

https://daneshyari.com/article/432666

Daneshyari.com

https://daneshyari.com/en/article/432666
https://daneshyari.com/article/432666
https://daneshyari.com

