
J. Parallel Distrib. Comput. 84 (2015) 65–75

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

On scalable parallel recursive backtracking
Faisal N. Abu-Khzam a,∗, Khuzaima Daudjee b, Amer E. Mouawad b, Naomi Nishimura b

a Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
b David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

h i g h l i g h t s

• A simple framework for parallelizing exact search-tree algorithms.
• An indexing scheme for simple task transmission and efficient communication.
• Efficient and effective extraction of heavy tasks for dynamic load balancing.
• The presented method scales almost linearly to a record number of processing elements.

a r t i c l e i n f o

Article history:
Received 16 March 2014
Received in revised form
3 March 2015
Accepted 7 July 2015
Available online 22 July 2015

Keywords:
Parallel algorithms
Recursive backtracking
Load balancing
Vertex cover
Dominating set

a b s t r a c t

Supercomputers are equipped with an increasingly large number of cores to use computational power as
a way of solving problems that are otherwise intractable. Unfortunately, getting serial algorithms to run
in parallel to take advantage of these computational resources remains a challenge for several applica-
tion domains. Many parallel algorithms can scale to only hundreds of cores. The limiting factors of such
algorithms are usually communication overhead and poor load balancing. Solving NP-hard graph prob-
lems to optimality using exact algorithms is an example of an area in which there has so far been limited
success in obtaining large scale parallelism. Many of these algorithms use recursive backtracking as their
core solution paradigm. In this paper, we propose a lightweight, easy-to-use, scalable approach for trans-
forming almost any recursive backtracking algorithm into a parallel one. Our approach incurs minimal
communication overhead and guarantees a load-balancing strategy that is implicit, i.e., does not require
any problem-specific knowledge. The key idea behind our approach is the use of efficient traversal oper-
ations on an indexed search tree that is oblivious to the problem being solved. We test our approach with
parallel implementations of algorithms for the well-known Vertex Cover and Dominating Set problems.
On sufficiently hard instances, experimental results show nearly linear speedups for thousands of cores,
reducing running times from days to just a few minutes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Parallel computation is becoming increasingly important as
performance levels out in terms of delivering parallelism within
a single processor due to Moore’s law. This paradigm shift means
that to attain speedup, software that implements algorithms that
can run in parallel on multiple processors/cores is required. Today
we have a growing list of supercomputers with tremendous pro-
cessing power. Some of these systems include more than a million
computing cores and can achieve up to 30 Petaflop/s. The constant

∗ Corresponding author.
E-mail addresses: faisal.abukhzam@lau.edu.lb (F.N. Abu-Khzam),

kdaudjee@uwaterloo.ca (K. Daudjee), aabdomou@uwaterloo.ca (A.E. Mouawad),
nishi@uwaterloo.ca (N. Nishimura).

increase in thenumber of processors/cores per supercomputermo-
tivates the development of parallel algorithms that can efficiently
utilize such processing infrastructures. Unfortunately, migrating
known serial algorithms to exploit parallelism while maintain-
ing scalability is not straightforward. The overheads introduced by
parallelism are very often hard to evaluate, and fair load balanc-
ing is possible only when accurate estimates of task ‘‘hardness’’
or ‘‘weight’’ can be calculated on-the-fly. Providing such estimates
usually requires problem-specific knowledge, rendering the tech-
niques developed for a certain problem uselesswhen trying to par-
allelize an algorithm for another.

As it is not likely that polynomial-time algorithms can be found
for NP-hard problems, the search for fast deterministic algorithms
could benefit greatly from the processing capabilities of super-
computers. Researchers working in the area of exact algorithms
havedeveloped algorithmsyielding lower and lower running times

http://dx.doi.org/10.1016/j.jpdc.2015.07.006
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.07.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.07.006&domain=pdf
mailto:faisal.abukhzam@lau.edu.lb
mailto:kdaudjee@uwaterloo.ca
mailto:aabdomou@uwaterloo.ca
mailto:nishi@uwaterloo.ca
http://dx.doi.org/10.1016/j.jpdc.2015.07.006

66 F.N. Abu-Khzam et al. / J. Parallel Distrib. Comput. 84 (2015) 65–75

Fig. 1. The Serial-RB algorithm (here p′ denotes the position of a search node in the left-to-right ordering of the node and its siblings).

[5,15,6,14,21]. However the major focus has been on improving
the asymptoticworst-case behavior of algorithms. The practical as-
pects of the possibility of exploiting parallel infrastructures have
received much less attention.

Most existing exact algorithms for NP-hard graph problems fol-
low the well-known branch-and-reduce paradigm. A branch-and-
reduce algorithm searches the complete solution space of a given
problem for an optimal solution. Simple enumeration is usually
prohibitively expensive due to the exponentially increasing num-
ber of potential solutions. To prune parts of the solution space,
an algorithm uses reduction rules derived from bounds on the
function to be optimized and the value of the current best solu-
tion. The reader is referred to Woeginger’s excellent survey paper
on exact algorithms for further details [25]. At the implemen-
tation level, branch-and-reduce algorithms translate to search-
tree-based recursive backtracking algorithms. The search tree size
usually grows exponentially with either the size of the input in-
stance n or some integer parameter k when the problem is fixed-
parameter tractable [11].

Nevertheless, search trees are good candidates for parallel de-
composition.While most divide-and-conquermethods for parallel
algorithms aimat partitioning a problem instance among the cores,
we partition the search space of the problem instead. Given c cores
or processing elements, a brute-force parallel solution would di-
vide a search tree into c subtrees and assign each subtree to a sep-
arate core for sequential processing. Onemight hope to thus reduce
the overall running time by a factor of c. However, this intuitive ap-
proach suffers from several drawbacks, including the obvious lack
of load balancing.

Even though our focus is on NP-hard graph problems, we note
that recursive backtracking is a widely-used technique for solv-
ing a very long list of practical problems. This justifies the need
for a general strategy to simplify the migration from serial to par-
allel algorithms. One example of a successful parallel framework
for solving different types of problems is MapReduce [8]. The suc-
cess of the MapReduce model can be attributed to its simplicity,
transparency, and scalability, all of which are properties essential
for any efficient parallel algorithm. In this paper, we propose a sim-
ple, lightweight, scalable approach for transforming almost any re-
cursive backtracking algorithm into a parallel one with minimal
communication overhead and a load balancing strategy that is im-
plicit, i.e., does not require any problem-specific knowledge. The
key idea behind our approach is the use of efficient traversal oper-
ations on an indexed search tree that is oblivious to the problem
being solved. To test our approach, we implement parallel exact
algorithms for the well-known Vertex Cover and Dominating Set
problems. Experimental results show that for sufficiently hard in-
stances, we obtain nearly linear speedups on at least 32,768 cores.

2. Preliminaries

Typically, a recursive backtracking algorithm exhaustively
explores a search tree T using depth-first search traversal. Each

node of T (a search node) maintains some data structures required
for completing the search. We denote a search node by Nd,p, where
d is the depth of Nd,p in T and p is the position of Nd,p in the left-
to-right ordering of all search nodes at depth d. The root of T is
thusN0,0. We use T (Nd,p) to denote the subtree rooted at nodeNd,p.
We say T has branching factor b if every search node has at most b
children. A generic serial recursive backtracking algorithm, Serial-
RB, is given in Fig. 1.

As an example, consider the problem of finding a minimum
set of vertices S ⊂ V of a graph G = (V , E) such that the
graph induced by V \ S is a forest, i.e. a graph with no cycles. A
possible implementation of Serial-RB which solves this problem,
also known as the Minimum Feedback Vertex Set problem, is as
follows. Every search node maintains a graph G′

= (V ′, E ′) and a
solution set S ′. We use Nd,p(G′) and Nd,p(S ′) to denote the graph
and the solution set at node Nd,p, respectively. At N0,0, we have
N0,0(G′) = G and N0,0(S ′) = ∅. The IsSolution (Nd,p) function
returns true whenever the graph induced by Nd,p(V ′) \ Nd,p(S ′)
is a forest and |Nd,p(S ′)| < |best_so_far(S ′)|, i.e the size of the
smallest solution found so far. The IsLeaf (Nd,p) function returns
true when the current branch cannot lead to any better solutions
(e.g., whenever |Nd,p(S ′)| ≥ |best_so_far(S ′)|). Finally, to generate
the children of a search node, we simply find a cycle inNd,p(G′) and
for each vertex v in that cycle we get a new search node Nd+1,p′ ,
where Nd+1,p′(S ′) = Nd,p(S ′) ∪ {v} and Nd+1,p′(G′) is obtained
by deleting v and all the edges incident on v from Nd,p(G′). In
terms of exact algorithms [25], GetNextChild corresponds to the
implementation of branching rules and IsLeaf implements pruning
rules. If we let G be a graph consisting of two triangles sharing
an edge, then Fig. 2 shows one possible search tree generated by
the described algorithm. Even though N1,1(G′) is not acyclic, the
children of N1,1 will be pruned. This follows from the fact that, in a
serial execution, N1,0(S ′) is a solution of size one and hence IsLeaf
(N1,1) would return true.

The goal of this paper is to transform Serial-RB into a scalable
parallel algorithm with as little effort as possible. For ease of
presentation, we make the following assumptions:

– Serial-RB solves an NP-hard optimization problem (i.e. mini-
mization or maximization) where each solution appears in a
leaf of the search tree.

– The global variable best_so_far stores the best solution found so
far.

– The IsSolution (Nd,p) function returns true only if Nd,p contains
a solution which is ‘‘better’’ than best_so_far .

– The search tree exploredby Serial-RB is binary (i.e. every search
node has at most two children).

In Section 4.4, we discuss how the same techniques can be easily
adapted to any search tree with arbitrary branching factor. The
only (minor) requirementwe impose is that the number of children
of a search node can be calculated on-the-fly and that generating
those children (usingGetNextChild (Nd,p)) follows a deterministic

Download English Version:

https://daneshyari.com/en/article/432667

Download Persian Version:

https://daneshyari.com/article/432667

Daneshyari.com

https://daneshyari.com/en/article/432667
https://daneshyari.com/article/432667
https://daneshyari.com

