J. Parallel Distrib. Comput. 84 (2015) 76-86

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Scalable linear programming based resource allocation for makespan
minimization in heterogeneous computing systems

CrossMark

Kyle M. Tarplee **, Ryan Friese?, Anthony A. Maciejewski?, Howard Jay Siegel *P

2 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, United States
b Department of Computer Science, Colorado State University, Fort Collins, CO 80523, United States

HIGHLIGHTS

We present a novel scheduling algorithm for heterogeneous computing environments.
Uses groupings of similar tasks and machines to reduce the computational complexity.

Schedule approaches a lower bound on the makespan as the number of tasks increases.

]
L]
e Computes upper and lower bounds on the optimal makespan.
[]
[]

Scheduling algorithm run time scales linearly with the number of tasks.

ARTICLE INFO

Article history:

Received 12 September 2014
Received in revised form

15 March 2015

Accepted 7 July 2015
Available online 20 July 2015

ABSTRACT

Keywords:

High performance computing
Scheduling

Resource management
Bag-of-tasks

Heterogeneous computing
Linear programming

Resource management for large-scale high performance computing systems poses difficult challenges to
system administrators. The extreme scale of these modern systems require task scheduling algorithms
that are capable of handling at least millions of tasks and thousands of machines. Highly scalable
algorithms are necessary to efficiently schedule tasks to maintain the highest level of performance from
the system. In this study, we design a novel linear programming based resource allocation algorithm
for heterogeneous computing systems to efficiently compute high quality solutions for minimizing
makespan. The novel algorithm tightly bounds the optimal makespan from below with an infeasible
schedule and from above with a fully feasible schedule. The new algorithms are highly scalable in terms
of solution quality and computation time as the problem size increases because they leverage similarity
in tasks and machines. This novel algorithm is compared to existing algorithms via simulation on a few
example systems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Our work considers a common scheduling model where users
submit a set of independent tasks known as a bag-of-tasks [7]. We

Today’s high performance computing (HPC) systems often have
hundreds of thousands of machines. The need for these extremely
large HPC systems is driven by increasingly larger HPC workloads
comprising potentially millions of tasks. The increase in computa-
tional capability of HPC environments can only be maintained if the
tasks can be intelligently assigned to machines quickly. Therefore,
there is a growing need for efficiently scheduling tasks to machines
in such large-scale environments.

* Corresponding author.
E-mail addresses: kyle.tarplee@colostate.edu (K.M. Tarplee),
ryan.friese@colostate.edu (R. Friese), aam@colostate.edu (A.A. Maciejewski),
hj@colostate.edu (HJ. Siegel).

http://dx.doi.org/10.1016/j.jpdc.2015.07.002
0743-7315/© 2015 Elsevier Inc. All rights reserved.

assume that the full bag-of-tasks is known a priori [7] (i.e., static
scheduling), a task can be scheduled to execute on only one
machine, and machines may only process one task at a time. The
HPC environments of primary interest have highly heterogeneous
tasks and machines and are known as heterogeneous computing
(HC) systems [17].

HC systems often have some special-purpose machines that can
perform specific tasks quickly, while other tasks might not be able
to run on them. Another cause of heterogeneity is differing compu-
tational requirements, input/output bottlenecks, or memory limi-
tations. For instance, a task that runs on a GPU might execute much
faster than the same task run on a general-purpose machine. The
heterogeneity in execution time of the tasks provides the sched-
uler with degrees of freedom to greatly decrease the maximum of
all the task finishing times, known as the makespan, compared to

http://dx.doi.org/10.1016/j.jpdc.2015.07.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.07.002&domain=pdf
mailto:kyle.tarplee@colostate.edu
mailto:ryan.friese@colostate.edu
mailto:aam@colostate.edu
mailto:hj@colostate.edu
http://dx.doi.org/10.1016/j.jpdc.2015.07.002

K.M. Tarplee et al. / J. Parallel Distrib. Comput. 84 (2015) 76-86 77

a naive scheduling algorithm. The makespan is a very common of-
fline scheduling objective [14,27]. The algorithms in this work can
be adapted to online batch mode scheduling algorithms where the
makespan is minimized for each batch of tasks. When a new task
arrives or a task is removed from the batch because it is now run-
ning on a machine, the schedule for the batch of tasks can be re-
computed.

Finding the optimal schedule for this static scheduling problem
is NP-Hard in general [13]. Therefore we seek to design algorithms
that find near-optimal solutions relatively quickly.

In this study, a set of efficient and scalable algorithms are pro-
posed that schedule heterogeneous tasks to a set of heterogeneous
machines with the goal of minimizing makespan. These algorithms
compute a lower bound using linear programming (LP) and then
quickly compute the fully feasible schedule. The algorithms have
very small run times, find schedules that have solutions closer to
optimal as the problem size increases, and good asymptotic algo-
rithmic complexity. This approach is therefore very well suited to
large-scale HPC environments. Often large computing systems are
composed of heterogeneous clusters of homogeneous machines.
The proposed algorithms decompose naturally into a high level
scheduler that determines which cluster should process the task
followed by a lower level scheduler per cluster that assigns the task
to a particular machine.

In summary the contributions of this paper are:

1. the formulation and evaluation of an algorithm that efficiently
computes a tight lower bound on the makespan,

2. the design and evaluation of a recovery algorithm to take the
lower bound solution and compute a near-optimal feasible
schedule,

3. a comparison to other heuristic scheduling algorithms, and

4. an evaluation and analysis of the scaling properties of the
proposed algorithms and algorithms from the literature.

The rest of this paper is organized as follows. First an algorithm
for minimum makespan scheduling is presented in Section 2.
Section 3 describes the nominal HC system and workload used
for simulations and evaluation. Bounds on the solution quality
are provided by the algorithm and are discussed in Section 4. In
Section 5, we compare this algorithm to other heuristic algorithms.
The applicability of the algorithm to very large-scale problems is
shown in Section 6 along with simulation results for very large
system configurations. We discuss related work in Section 7, and
Section 8 concludes this study and presents some ideas for future
work.

2. Algorithm design

2.1. Approach

The fundamental approach of this paper is to apply divisible
load theory (DLT) [5,4] to ease the computational requirements of
calculating a solution to the makespan scheduling problem. The
technique operates in two steps to calculate the lower and upper
bounds on makespan. The first step uses DLT, where we assume
a single task is allowed to be divided and scheduled onto any
number of machines, to calculate the lower-bound solution. After
the lower-bound solution is computed, a two-phase algorithm is
used to recover a feasible solution from the infeasible lower-bound
solution. The feasible solution will be shown empirically to be a
tight upper bound on the optimal makespan.

Heterogeneous computing (HC) systems often have groups
of machines, typically purchased at the same time, that have
identical or very similar performance characteristics. This allows
one to group these similar machines (for the purposes of analysis)
into a unique machine type. Machines belonging to a machine

type have virtually indistinguishable performance properties with
respect to the workload. Machines of the same type may differ
vastly in feature sets so long as the performance of the tasks
under consideration are not affected. Tasks often exhibit natural
groupings as well. Tasks of the same task type are often submitted
many times to perform statistical simulations and other repetitive
jobs. Having groupings for tasks and for machines permits less
profiling effort to estimate the run time for each task on each
machine.

Traditionally the static scheduling problem is posed as assign-
ing all tasks to all machines. The classic formulation is not well
suited for recovering a high quality feasible solution from a relax-
ation of the problem. The decision variables in the classic formu-
lation are binary valued (a task is assigned or not assigned to a
machine), and rounding a real value from the lower bound to a
binary value can change the objective significantly. Complicated
rounding schemes are necessary to iteratively compute a suitable
solution. Rather than addressing the problem of assigning all tasks
to all machines, we pose the problem as determining the number
of tasks of each type to assign to machines of each type. With this
modification, decision variables will be large integers > 1, result-
ing in only a small error to the objective function when round-
ing to the nearest integer. This approximation is most accurate
when the number of tasks assigned to each machine type is large.
In addition to easing the recovery of the integer solution, another
benefit of this formulation is that it is significantly less compu-
tationally intensive due to solving the higher level assignment of
tasks types to machine types with DLT, before solving the fine-
grain assignment of individual tasks to machines. As such, this ap-
proach can be thought of as a hierarchical solution to the static
scheduling problem.

2.2. Lower bound

The lower bound on the makespan is given by the solution to an
LP problem and is formulated as follows. Let there be T task types
and M machine types. Let T; be the number of tasks of type i and
M; be the number of machines of type j. Let 1 be the number of
tasks of type i assigned to machine type j, where u; € R is the
primary decision variable in the optimization problem. Let ETC be
a T x M matrix where ETC; is the estimated time to compute a
task of type i on a machine of type j. The ETC matrix is frequently
used in scheduling algorithms (e.g.,[10,15,7,8,16]). ETCis generally
obtained from historical data in real environments.

The lower bound on the finishing time of the machines of a
given type is found by allowing tasks assigned to a machine type
to be divided among all machines to ensure the minimal finishing
time. With this conservative approximation, all machines of type j
finish at the same time. The finishing time of all machines of type j
for divisible tasks, denoted by F;, is given by

1
F=— " uETC;. (1)
M; &

Throughout this work, sums over i always go from 1 to T and
sums over j always go from 1 to M, thus the ranges are omitted.
Given that F; is a lower bound on the finishing time for a machine
type, the tightest lower bound on the makespan is

MSp = max F,. (2)
j

The resulting optimization problem for the lower bound is:

minimize MS;p
. MSip

subject to: Vi Zuij =T
7 3)

Vj F <MSp
Vi,j ui=0.

Download English Version:

https://daneshyari.com/en/article/432668

Download Persian Version:

https://daneshyari.com/article/432668

Daneshyari.com

https://daneshyari.com/en/article/432668
https://daneshyari.com/article/432668
https://daneshyari.com

