J. Parallel Distrib. Comput. 84 (2015) 94-107

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

On the competitiveness of scheduling dynamically injected tasks on

processes prone to crashes and restarts

Chryssis Georgiou®*, Dariusz R. KowalskiP

2 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

CrossMark

b Department of Computer Science, University of Liverpool, Liverpool L69 3BX, United Kingdom

HIGHLIGHTS

Centralized and distributed settings considered.

Negative results: Conditions for non-competitiveness.

New framework for fault-tolerant job scheduling with dynamic task arrivals.

Positive results: Competitive (efficient) algorithms wrt the number of pending jobs.

ARTICLE INFO

Article history:

Received 3 October 2013
Received in revised form

14 July 2015

Accepted 17 July 2015
Available online 26 July 2015

Keywords:

Task execution

Dynamic task injection
Processor crashes and restarts
Competitive analysis
Distributed algorithms

ABSTRACT

To identify the tradeoffs between efficiency and fault-tolerance in dynamic cooperative computing, we
initiate the study of a task performing problem under dynamic processes’ crashes/restarts and task
injections. The system consists of n message-passing processes which, subject to dynamic crashes and
restarts, cooperate in performing tasks that are continuously and dynamically injected to the system.
Tasks are not known a priori to the processes. This problem abstracts todays Internet-based computations,
such as Grid computing and cloud services, where tasks are generated dynamically and different tasks
may become known to different processes. We measure performance in terms of the number of pending
tasks, and as such it can be directly compared with the optimum number obtained under the same
crash-restart-injection pattern by the best off-line algorithm. Hence, we view the problem as an online
problem and we pursue competitive analysis. We propose several deterministic algorithmic solutions to
the considered problem under different information models and correctness criteria, and we argue that
their performance is close to the best possible offline solutions. We also prove negative results that open
interesting research directions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

of such cooperation problems (e.g., [11,12,14,21-23,28,30]) and in
deploying distributed collaborative systems and applications
(e.g. [2,4,15,25,27]).

Motivation. One of the fundamental problems in distributed com-
puting is to have a collection of processes to collaborate in per-
forming large sets of tasks. For such distributed collaboration to be
effective it must be designed to cope with dynamic perturbations
that occur in the computation medium (e.g., processes or com-
munication failures). For this purpose, a vast amount of research
has been dedicated over the last two decades in developing fault-
tolerant algorithmic solutions and frameworks for various versions

* Corresponding author.
E-mail addresses: chryssis@cs.ucy.ac.cy (C. Georgiou),
D.Kowalski@liverpool.ac.uk (D.R. Kowalski).

http://dx.doi.org/10.1016/j.jpdc.2015.07.007
0743-7315/© 2015 Elsevier Inc. All rights reserved.

In order to identify the tradeoffs between efficiency and fault-
tolerance in distributed cooperative computing, much research
was devoted in studying the abstract problem of using n processes
to cooperatively perform m independent tasks in the presence of
failures (see for example [13,21,24]). In this problem, known as
Do-All, the number of tasks m is assumed to be fixed and known
a priori to all processes. Although there are several applications
in which tasks can be known a priori, in todays typical Internet-
based computations, such as Grid computing (e.g., [15]), Cloud
services (e.g., [2]), and master-worker computing (e.g., [25,27]),
tasks are generated dynamically and different tasks may become
known to different processes. As such computations are becoming
very popular, there is a corresponding need to develop efficient and


http://dx.doi.org/10.1016/j.jpdc.2015.07.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.07.007&domain=pdf
mailto:chryssis@cs.ucy.ac.cy
mailto:D.Kowalski@liverpool.ac.uk
http://dx.doi.org/10.1016/j.jpdc.2015.07.007

C. Georgiou, D.R. Kowalski /J. Parallel Distrib. Comput. 84 (2015) 94-107 95

fault-tolerant algorithmic solutions that would also be able to cope
with dynamic tasks injections.

Our contributions. In this work, in an attempt to identify the
tradeoffs between efficiency and fault-tolerance in dynamic co-
operative computing, we initiate the study of a task performing
problem in which n message-passing processes, subject to dy-
namic crashes and restarts, cooperate in performing independent
tasks that are continuously and dynamically injected to the system.
Our investigation is based on a simple model of computation that
abstracts key attributes, such as dynamic task arrivals, worst case
occurrences of processes crashes and restarts, and level of infor-
mation given to the processes. Our goal is to provide a rigorous
analysis of the efficiency of algorithmic solutions - i.e., provide
provable efficiency and fault-tolerance guarantees - and identify
limitations even under the simple model (lower bound and impos-
sibility results that are valid also in more complex settings). We
believe that our investigation provides new insights on the com-
plexity and fault-tolerance of dynamic task computations, on
which follow up works could build on, either by enhancing the
model to bypass the limitations or focus on extending our positive
results to different (more complex) settings.

Basic framework: The computation is broken into synchronous
rounds, in which each process is allocated tasks, receives mes-
sages sent to it in the prior round, performs local computations
(including performing at most one task), and sends messages (if
any). Unless otherwise stated, we assume that tasks are of unit-
length, that is, it takes one round for a process to perform a task.
This abstracts the situations where tasks consume comparable re-
sources' and processors are homogeneous (hence one can specify
the notion of a unit-length based on the tasks’ requirements and
processes’ capabilities). An execution of an algorithm is specified
under a crash-restart-injection pattern, that is, a collection of crash,
restart and injection events; in a crash event a process crashes, in a
restart event a crashed process restarts, and in an injection event,
a task in injected in the system (the task is allocated to one or
many processes). Then, the efficiency of an algorithm is measured
in terms of the maximum number of pending tasks at the beginning
of a round of an execution, taken over all rounds and all executions.
This enables us to view the problem as an online problem and pur-
sue competitive analysis [32], that is, compare the efficiency of a
given algorithm with the efficiency of the best offline algorithm
that knows a priori the crash-restart-injection patterns; we refer
to the efficiency of the offline algorithm as OPT. More precisely,
we say that an algorithm has OPT + x pending-tasks competitive-
ness, if the algorithm’s maximum number of pending tasks (over all
rounds and executions) is greater than OPT by at most an additive
real number x. (A formal definition is given in Section 2.) Observe
that the comparison to OPT means in fact that we compare our al-
gorithm’s efficiency to the efficiency of all other possible solutions,
for any crash-restart-injection pattern.

Task performance guarantees: We consider two versions of the
problem with respect to the task performance guarantees required
by algorithmic solutions. The first one, which constitutes the basic
correctness property, requires that no task is lost, that is, a task
is either performed or the information of the task remains in
the system. The second and stronger property, which we call
fairness, requires that all tasks injected in the system are eventually
performed. As we mention below, we draw a line on the conditions
under which these two properties can be satisfied and with what
cost.

1 We refer the reader to [21] for a discussion on cooperative applications
involving tasks that are independent and consume comparable resources.

Our approach: We deploy an incremental approach in studying the
problem. We first assume that there is a centralized authority,
called central scheduler, that at the beginning of each round informs
the processes (that are currently operational) about the tasks
that are still pending to be performed, including any new tasks
injected to the system in this round. The reason to begin with this
assumption is two-fold: (a) The fact that processes have consistent
information on the number of pending tasks enables us to focus
on identifying the inherent limitations of the problem under
processes failures/restarts and dynamic injection of tasks without
having to implement information sharing amongst processes. The
algorithmic solutions developed under this information model
are used as building blocks in versions of the problem that
deploy weaker information models. Furthermore, lower bound
results developed in this information model are also valid for
weaker information models. (b) Studying the problem under
this assumption has its own independent interest, as the central
scheduler can be viewed as an abstraction of a monitor used
for monitoring the computation progress and providing feedback
to the computing elements. For example it could be viewed as
a master server in Master-Worker Internet-based computations
such as SETI [25] or Pregel [27], or as a resource broker/scheduler
in Computational Grids such as EGEE [15].

We then limit the information provided to the processes. We
consider a weaker centralized authority, called central injector,
which informs processes, at the beginning of each round, only
about the tasks injected to the system in this round and
information about which tasks have been performed only in the
previous round. We show how to transform solutions for the task
performing problem under the model of central scheduler into
solutions for the problem under the model of central injector with
the expense of sending a quadratic number of messages in every
round. It also occurs that a quadratic number of messages must
be sent in some rounds by any correct distributed solution for the
considered problem in the model of central injector.

With the gained knowledge and understanding, we then show
how processes can obtain common knowledge on the set of
pending tasks without the use of a centralized authority. We
now assume the existence of a local injector that allocates tasks
to processes without giving them any global information (for
example, each process may be allocated tasks that no other
process in the system has been allocated, or only a subset of
processes may be allocated the same task). The injector can be
viewed, for example, as a local daemon of a distributed application
that provides local information to the process that is running
on. We show that solutions to this more general setting come
with minimal cost to the competitiveness, provided that reliable
multicast [7] is available.

Our results: We now summarize our results. (All results concern
deterministic solutions.)

(a) Limitations on competitiveness: We first show a lower bound
of OPT + n/3 on the pending-tasks competitiveness of
any deterministic algorithm, even for algorithms that make
use of messages and are designed for restricted forms of
crash-restarts patterns (cf. Section 3). The lower bound is
proved for the model of central scheduler, but since this is the
strongest information model, the result holds also for the other
two weaker information models.

(b) Solutions guaranteeing correctness: Within the model of cen-
tral scheduler we develop the deterministic algorithm ALGCS
that does not make any use of message exchange amongst
processes and achieves OPT + 2n pending-tasks competitive-
ness; in view of the lower bound above, the algorithm is op-
timal within a constant factor on the additive term of the
competitiveness formula. Using a generic transformation we ob-
tain algorithm ALGCI for the model with central injector with



Download English Version:

https://daneshyari.com/en/article/432670

Download Persian Version:

https://daneshyari.com/article/432670

Daneshyari.com


https://daneshyari.com/en/article/432670
https://daneshyari.com/article/432670
https://daneshyari.com/

