J. Parallel Distrib. Comput. 75 (2015) 53-66

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Memory-aware tree traversals with pre-assigned tasks

CrossMark

Julien Herrmann ®*, Loris Marchal?, Yves Robert ab

2 Ecole Normale Supérieure de Lyon, CNRS/INRIA, France

b University of Tennessee Knoxuville, USA

HIGHLIGHTS

Complexity of scheduling task graphs with two memories.

Application to CPU/GPU hybrid programming.

Heuristics to design efficient trade-offs between both peak memories.
Analysis of post-order traversals and application to multifrontal methods.

ARTICLE INFO

ABSTRACT

Article history:

Received 7 June 2013

Received in revised form

22 July 2014

Accepted 2 October 2014
Available online 15 October 2014

Keywords:

Scheduling
Memory-aware

Sparse matrix factorization
Multifrontal method

We study the complexity of traversing tree-shaped workflows whose tasks require large 1/O files. We
target a heterogeneous architecture with two resource types, each with a different memory, such as a
multicore node equipped with a dedicated accelerator (FPGA or GPU). The tasks in the workflow are
colored according to their type and can be processed if all their input and output files can be stored
in the corresponding memory. The amount of used memory of each type at a given execution step
strongly depends upon the ordering in which the tasks are executed, and upon when communications
between both memories are scheduled. The objective is to determine an efficient traversal that minimizes
the maximum amount of memory of each type needed to traverse the whole tree. In this paper, we
establish the complexity of this two-memory scheduling problem, and provide inapproximability results.
In addition, we design several heuristics, based on both post-order and general traversals, and we evaluate
them on a comprehensive set of tree graphs, including random trees as well as assembly trees arising in

Tree traversal the context of sparse matrix factorizations.

Bi-objective optimization

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern computing platforms are heterogeneous: a typical node
is composed of a multi-core processor equipped with a dedicated
accelerator, such as a FPGA or a GPU. Our goal is to study the execu-
tion of a computational workflow, described by an out-tree, onto
such a heterogeneous platform, with the objective of minimizing
the amount of memory of each resource needed for its processing.
The nodes of the workflow tree correspond to tasks, and the edges
correspond to the dependences among the tasks. The dependences
are in the form of input and output files: each node accepts a (po-
tentially large) file as input, and produces a set of files, each of them
to be processed by a different child node. We consider in this paper

* Corresponding author.
E-mail addresses: julien.herrmann@ens-lyon.fr (J. Herrmann),
loris.marchal@ens-lyon.fr (L. Marchal), yves.robert@ens-lyon.fr (Y. Robert).

http://dx.doi.org/10.1016/j.jpdc.2014.10.004
0743-7315/© 2014 Elsevier Inc. All rights reserved.

that we have two different processing units at our disposal, such
as a CPU and a GPU. For sake of generality, we designate them by
a color (namely blue and red). Each task in the workflow is best
suited to a given resource type (say a core or a GPU), and is colored
accordingly. To execute a task of a given color, the input file and
all the output files of the task must fit within the corresponding
memory. As the workflow tree is traversed, tasks of different col-
ors are processed, and capacity constraints on both memory types
must be met. In addition, when a child of a task has a different color
than its parent, say for example that a blue task has a red child, a
communication from the blue memory to the red memory must
be scheduled before the red child can be processed (and again,
the input file and all output files of this red child must fit within
the red memory). All these constraints require to carefully orches-
trate the scheduling of the tasks, as well as the communications
between memories, in order to minimize the maximum amount of
each memory that is needed throughout the tree traversal.
Memory-aware scheduling is an important problem that has
been the focus of many papers (see Section 2 for related work).

http://dx.doi.org/10.1016/j.jpdc.2014.10.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.10.004&domain=pdf
mailto:julien.herrmann@ens-lyon.fr
mailto:loris.marchal@ens-lyon.fr
mailto:yves.robert@ens-lyon.fr
http://dx.doi.org/10.1016/j.jpdc.2014.10.004

54 J. Herrmann et al. / . Parallel Distrib. Comput. 75 (2015) 53-66

This work mainly builds upon the pioneering work of Liu, who has
studied tree traversals that minimize the peak amount of memory
used on a homogeneous system, hence with a single memory type.
Liu first restricted to depth-first traversals in [17], before dealing
with an optimal algorithm for arbitrary traversals in [17]. In many
situations, the optimal traversal is a depth-first traversal, but this is
not always the case. An assessment of the relative performance of
depth-first traversals versus optimal traversals is proposed by [14].
The main objective of this paper is to extend these results to
colored trees with two memory types, and tasks belonging to a
given type. Clearly, the traversal, i.e., the order chosen to execute
the tasks, and to perform the communications, plays a key role
in determining which amount of each memory is needed for a
successful execution of the whole tree. The interplay between
both memories dramatically complicates the scheduling: it is no
surprise that the complexity of the problem, that was polynomial
with a unique memory, now becomes NP-complete.

In this paper, we concentrate on memory usage, but we are fully
aware that performance aspects are important too, and that even
more difficult trade-offs are to be found between parallel perfor-
mance and memory consumption. One could envision a fully gen-
eral framework, where tasks have different execution-times for
each resource type (instead of being tied to a given resource as
in this paper), and where concurrent execution of several tasks on
each resource type is possible (instead of the fully sequential pro-
cessing of the task graph that is assumed in this paper). Altogether,
this study is only a first step towards the design of memory-aware
schedules on modern heterogeneous platforms with two memory
types. However, despite the apparent simplicity of the model, our
results show that we already face a difficult bi-criteria optimiza-
tion problem when dealing with two different memory types. We
firmly believe that the results presented in this paper will help
to lay the foundations for memory-aware scheduling algorithms
on modern heterogeneous platforms such as those equipped with
multicores and GPUs. Indeed, one key contribution of the paper is
the derivation of several complexity results: NP-completeness of
the problem, and inapproximability within a constant («,) factor
pair of both absolute minimum memory amounts. Here the abso-
lute minimum memory of a given type is computed when assum-
ing an infinite amount of memory of the other type.

Another major contribution is the study of depth-first traver-
sals and related variants. We show how to extend Liu’s algorithm to
compute the best depth-first traversal, which simultaneously min-
imizes both memory usages. However, while depth-first traversals
were natural algorithms with a single memory, they severely con-
strain the activation of communication nodes with two memories.
We show that the optimization problem is still NP-complete when
relaxing the firing of communication nodes in depth-first traver-
sal, which leads us to go beyond depth-first traversals and to in-
troduce general heuristics. These heuristics extends Liu’s optimal
algorithm along various (greedy) decision criteria to trade-off the
usage of both memory types.

Finally, the third major contribution is a comprehensive assess-
ment of all these heuristics using both randomly generated trees,
and actual elimination trees that arise from the multifrontal fac-
torization of sparse linear systems.

The rest of the paper is organized as follows: We start with
an overview of related work in Section 2. Then we detail the
framework in Section 3. The next four sections constitute the heart
of the paper. We deal with complexity results in Section 4. Section 5
is devoted to the study of depth-first traversals, a first class of
(widely-used) heuristics. Then we introduce additional heuristics
in Section 6. The experimental evaluation of all the heuristics
is conducted in Section 7. Finally we provide some concluding
remarks and hints for future work in Section 8.

2. Related work

The work presented in this paper builds upon previous results
related to memory-aware scheduling, but its applications are
relevant to the field of sparse matrix factorization and of hybrid
computing. In this section, we present related work for each
domain.

2.1. Sparse matrix factorization

Determining a memory-efficient tree traversal is very impor-
tant in sparse numerical linear algebra. The elimination tree is
a graph theoretical model that represents the storage require-
ments, and computational dependences and requirements, in the
Cholesky and LU factorization of sparse matrices. In a previous
study, we have described how such trees are built, and how the
multifrontal method organizes the computations along the tree
[14]. This is the context of the founding studies of Liu [17,18]
on memory minimization for postorder or general tree traversals
mentioned in Section 1. Memory minimization is still a concern
in modern multifrontal solvers when dealing with large matrices.
In particular, efforts have been made to design dynamic sched-
ulers that takes into account dynamic pivoting (which impacts the
weights of edges and nodes) when scheduling elimination trees
with strong memory constraints [11], or to consider both task and
tree parallelism with memory constraints [1]. Recently, still in the
context of a single memory type, an extension of these results to
parallel machines has been proposed in [20]. While these studies
try to optimize memory management in existing parallel solvers,
we aim at designing a simple model to study the fundamental un-
derlying scheduling problem.

2.2. Scientific workflows

The problem of scheduling a task graph under memory con-
straints also appears in the processing of scientific workflows
whose tasks require large I/O files. Such workflows arise in many
scientific fields, such as image processing, genomics or geophys-
ical simulations. The problem of task graphs handling large data
has been identified in [22] which proposes some simple heuristic
solutions. Surprisingly, in the context of quantum chemistry com-
putations, Lam et al. [16] have recently rediscovered the algorithm
published in 1987 in [18].

2.3. Pebble game and its variants

On the more theoretical side, this work builds upon the many
papers that have addressed the pebble game and its variants.
Scheduling a graph on one processor with the minimal amount of
memory amounts to revisiting the I/O pebble game with pebbles of
arbitrary sizes that must be loaded into main memory before firing
(executing) the task. The pioneering work of Sethi and Ullman [24]
deals with a variant of the pebble game that translates into the
simplest instance of the problem with a unique memory and where
all files have weight 1. The concern in [24] was to minimize the
number of registers that are needed to compute an arithmetic
expression. The problem of determining whether a general DAG
can be traversed with a given number of pebbles has been shown
NP-hard by Sethi [23] if no vertex is pebbled more than once (the
general problem allowing recomputation, that is, re-pebbling a
vertex which have been pebbled before, has been proven PSPACE
complete [9]). However, this problem has a polynomial complexity
for tree-shaped graphs [24]. Recently, still in the contact of a single
memory type, an extension of these results to parallel machines
base been proposed in [19].

Download English Version:

https://daneshyari.com/en/article/432682

Download Persian Version:

https://daneshyari.com/article/432682

Daneshyari.com

https://daneshyari.com/en/article/432682
https://daneshyari.com/article/432682
https://daneshyari.com

