
J. Parallel Distrib. Comput. 75 (2015) 101–106

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Dynamic task scheduling using a directed neural network
Binodini Tripathy a, Smita Dash b, Sasmita Kumari Padhy c,∗

a KIIT University, Odisha, India
b SOA University Bhubaneswar, Odisha, India
c National Institute of Technology, Patna, India

h i g h l i g h t s

• Development of the learning method for ANN.
• Development of a method for optimization of RBFNN.
• Use of DSO in task scheduling.
• Use of DSO trained ANN in task scheduling.
• Use of DSO trained RBFNN in task scheduling.

a r t i c l e i n f o

Article history:
Received 7 June 2014
Received in revised form
23 September 2014
Accepted 26 September 2014
Available online 8 October 2014

Keywords:
Task scheduling
Directed search optimization
Neural network

a b s t r a c t

This article is based on the problem of work flow scheduling in grid environment ofmulti-processors.We,
in this paper, introduce three novel approaches for the task scheduling problem using recently proposed
Directed Search Optimization (DSO). In the first attempt, task scheduling is framed as an optimization
problem and solved by DSO. Next, this paper makes use of DSO as a training algorithm to train (a) a
three layer Artificial Neural Network (ANN) and then (b) Radial Basis Function Neural Networks (RBFNN).
These DSO trained networks are used for task scheduling and interestingly yield better performance than
contemporary algorithms as evidenced by simulation results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A computational grid is a coordinated phenomenon to share
resources. This solves the problem in organization that is virtual,
dynamic and multi-institutional. This coordinates resources that
are not controlled centrally. The grid uses some standard protocols
those are open and of general-purpose. The grid, in fact, is an inter-
facing tool for delivering important service quality. This virtualizes
the resource, provides on-demand, and shares the resource among
the organizations. This is consisting of a device to share the power
of the computer and at the same time to store the data on the In-
ternet [10,17]. There is a requirement for the management of the
grid through an efficient scheduling approach.

Multiprocessor scheduling is an NP-hard problem [14,8,2]. The
scheduling problem for tasks either dependent or independent is a
well-studied discipline in the literature. In this article, we study the
problem in an environment that is heterogeneous. These dynamic

∗ Corresponding author.
E-mail address: chavisiba@rediffmail.com (S.K. Padhy).

scheduling approaches are applicable to any larger set of real-time
applications. These applications can be executed deterministically.
Some of the conventional approaches provide global optimum,
however longer time for execution and limited application for
real-world problems are the drawbacks [15], whereas some other
conventional approaches used may be deterministic and fast, but
however fall into local optima [6].

This led to the research studies for the application of meta-
heuristics, because efficacy or application of these algorithms is
not limited for a specific problem. Available approaches for mul-
tiprocessor scheduling are broadly classified into heuristics and
meta heuristics categories. The tasks maintain a queue in heuristic
approaches. This queue is a priority queue and the processor pro-
cesses the tasks on a first come first served basis, while in meta-
heuristic approaches, they solve a class of computing problems by
hybridizing user-provided procedures. In fact, these are heuristics
by themselves, but in an efficient manner. Accordingly, Genetic Al-
gorithms (GA) [14,19], Ant Colony Optimization (ACO) [5], Particle
Swarm Optimization (PSO) [22,4,1,13,18], etc., are used for a bet-
ter solution of the problem. But the results are constrained by effi-
ciency. Hence, this paper proposes DSO [23] for task scheduling.

http://dx.doi.org/10.1016/j.jpdc.2014.09.015
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.09.015
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.09.015&domain=pdf
mailto:chavisiba@rediffmail.com
http://dx.doi.org/10.1016/j.jpdc.2014.09.015


102 B. Tripathy et al. / J. Parallel Distrib. Comput. 75 (2015) 101–106

The art of using the artificial neural network (ANN) for task
scheduling has been gaining momentum since last three decades.
ANN trained with Back Propagation (ANN–BP) once again falls
short of providing exact solution to the problem. Hence, this paper
proposes DSO [23] as a training algorithm for ANN to be used in
task scheduling.

Using neural networks has the limitations of large complexity
and also fails because of over-fitting, local optima. On the other
hand, RBFNNs, with only one hidden layer, have the ability to
find global optima. In addition to less computational complexity,
simulations performed in the literature reveal that the RBFNN
produces superior performance as compared to other existing
ANN-based approaches. Hence the works on task scheduling using
RBFNN became an established and an active area of academic
research and development [16,7,21,12].

However, there still are some difficulties with building RBFNNs.
Main problems with RBFNNs are in determining the number of
RBFs, number of cluster centers, etc. The conventional approaches
consume longer time in determining the parameters using trial-
and-error methods. Selecting the free parameters for the RBFs is
also an issue for RBFNN. To get rid of the above-mentioned prob-
lems like trial-and-error steps and that of local optimal, Barreto
et al. [3] used GA and Feng [9] used PSO to decide the centers of
hidden neurons, spread and bias parameters by minimizing the
Mean Square Error (MSE) of the desired outputs and actual out-
puts. In this paper we use DSO [23] for the training of ANN and
RBFNN equalizers.

The paper is organized as follows: Section 2 discusses the prob-
lem of task scheduling. Sections 3–5 respectively discuss proposed
approaches, DSO, DSO-trained ANN, and DSO-trained RBFNN. Per-
formance of proposed approaches is evaluated through simula-
tions explained in Section 6. Finally conclusion of the paper is
outlined in Section 7.

2. The problem

This article considers the problem of assignment of task in
the following manner. In the multiprocessor scheduling problem,
the schedule is normally reflected as a task graph (TG). A simple
task graph, used throughout this article, with communication and
computation costs is shown in Fig. 1 and devised in a way used
in [20]. The task graph T = (N, S) is a set N of n nodes and a set
S of s sides. Here, the nodes correspond to tasks derived from the
applied task, and the sides correspond to constrained conditions
among the tasks that are dependent. To be more specific, each side
si,j ∈ S between task ni and nj meaning that the objective output
of task ni can transmit to task nj to make the next task nj to start
execution. With reference to Fig. 1, the task with no predecessor is
called as the entry task and the task with no successor is called the
exit task.

The weights wi attached to the tasks ni ∈ N are positive and
termed as computation cost. However, the computing efficiency
of the processors in heterogeneous environments is different from
each other. The weights wi,j and ŵi respectively are computation
cost of the task ni on the processor pj and average computation
cost. The computation cost of a task in this paper refers to the task
execution time.

The nonnegative weight ci,j associated with side si,j ∈ S corre-
sponds to its communication cost between dependent tasks ni and
nj. If the tasks those are dependent are with different processors,
then we need to compute the communication cost. Hence, actual
communication cost is zero for the tasks with the same processor.

Consider a TG for T tasks and with P processors. For the task ni,
its earliest start time Tstart


ni, pj


on the processor pj is defined as:

Tstart

ni, pj


= max


Tfree


pj


, Tready


ni, pj


. (1)

Fig. 1. An example of multiprocessor scheduling problem. (a) A simple task graph
with communication costs and (b) computation costs [20].

Here, Tfree

pj


is the time when processor pj is free for task ni to be

executed. Most of the time, Tfree

pj


refers to the completion of the

last task by the processor pj. In some cases task ni may be injected
in a time when the processor pj is idle. In other words, when the
length of an idle time gap is more than wi, Tfree


pj


may finish

before the finish time of the last task. Here, Tready

ni, pj


represents

the time of arrival of the entire data set at the processor pj, and
defined as:

Tready

ni, pj


= max

nk∈pred(ni)


Tfinish (nk) + ck,i


. (2)

Here, Tfinish (nk) is actual finish time for the execution of the task nk
and pred (ni) is the set of predecessors for the same task ni.

In non-pre-emptive environments, Tfinish

ni, pj


is the fastest

time to finish the task ni with processor pj as:

Tfinish

ni, pj


= Tstart


ni, pj


+ wi,j. (3)

When task ni is fixed for scheduling with the processor pj, the
quickest start and finish time with the processor pj are also actual
start and finish time for the task, respectively


i.e., Tstart (ni) =

Tstart

ni, pj


and Tfinish (ni) = Tfinish


ni, pj


. Assuming that the

starting time for the first task is time 0, the total length of schedule
is termed as the makespan and is the actual largest finish time of
the exit task, which is:

makespan = max
i

[Tfinish (nexit)] . (4)

Hence, the objective of the problem is to process the task set
with the processor set while minimizing the makespan having
considered the constraints.

3. Task assignment using DSO [23]

This section first outlines basic definitions, parameter ranges
and nomenclature used in Section 3.1, followed by algorithm steps
of DSO as proposed by Dexuan Zou et al. [23] in Section 3.2.

3.1. Terminology

This sub-section outlines the terms those are better explained
in Fig. 2.

• jg : global best solution vector.
• r is a random number in the region [0, 1]
• xji (k) and xji (k + 1): value of xji in the kth iteration, and updated

component (determined by pα) respectively.



Download English Version:

https://daneshyari.com/en/article/432686

Download Persian Version:

https://daneshyari.com/article/432686

Daneshyari.com

https://daneshyari.com/en/article/432686
https://daneshyari.com/article/432686
https://daneshyari.com

