J. Parallel Distrib. Comput. 75 (2015) 107-122

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Assessing the role of mini-applications in predicting key performance
characteristics of scientific and engineering applications

R.F. Barrett*, P.S. Crozier, D.W. Doerfler, M.A. Heroux, P.T. Lin, H.K. Thornquist,

T.G. Trucano, C.T. Vaughan

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, USA

@ CrossMark

HIGHLIGHTS

e Proxies are being used to examine the performance of full application codes.
o We present a methodology for showing the link between full application codes and their proxies.
o We demonstrate this methodology using four applications and their proxies.

ARTICLE INFO ABSTRACT

Article history:

Received 10 December 2013
Received in revised form

7 September 2014

Accepted 8 September 2014
Available online 28 September 2014

Keywords:

High performance computing
Validation

Scientific computing

Computational science and engineering application programs are typically large, complex, and dynamic,
and are often constrained by distribution limitations. As a means of making tractable rapid explorations
of scientific and engineering application programs in the context of new, emerging, and future computing
architectures, a suite of “miniapps” has been created to serve as proxies for full scale applications. Each
miniapp is designed to represent a key performance characteristic that does or is expected to significantly
impact the runtime performance of an application program. In this paper we introduce a methodology
for assessing the ability of these miniapps to effectively represent these performance issues. We applied
this methodology to three miniapps, examining the linkage between them and an application they are
intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial
steps required to begin to answer the question, “Under what conditions does a miniapp represent a key

performance characteristic in a full app?”

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Over the past several years computer architectures com-
monly employed by the computational science and engineering
communities have remained relatively stable, with subsequent
generations characterized by faster processors, memories, and in-
terconnects. These changes have typically resulted in predictably
faster runtimes for application programs. Emerging and expected
future architectures, however, are presenting special challenges
and opportunities that, if not effectively exploited, could result in
slower runtimes. Driven by stagnant clock speeds, memory con-
straints, and power consumption restrictions [3,9], architects are
exploring designs involving wider vector units, significantly more
but less powerful processor cores, increased threading, more com-

* Corresponding author.
E-mail address: rfbarre@sandia.gov (R.F. Barrett).

http://dx.doi.org/10.1016/j.jpdc.2014.09.006
0743-7315/© 2014 Elsevier Inc. All rights reserved.

plex memory hierarchies, differently balanced node interconnects,
etc.

The means for exploiting these capabilities must be investigated
within the relevant context of their use. However, application
programs targeting these machines are typically large, complex,
dynamic, and often constrained by distribution limitations, and
typically outlive the computing environments they originally tar-
geted. They may be constructed using hundreds of thousands to
millions of source lines of code, written in multiple programming
languages and linking in several third-party libraries, and devel-
oped over decades by multiple generations of computational sci-
entists. Thus examining and addressing the issues that will enable
effective execution on these machines are prohibitive.

As a means of making tractable rapid explorations of scien-
tific and engineering application programs in this context, a suite
of “mini-apps” has been created to serve as proxies for full scale
applications. Each miniapp is designed to represent a key per-
formance characteristic that does, or is expected to significantly,


http://dx.doi.org/10.1016/j.jpdc.2014.09.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.09.006&domain=pdf
mailto:rfbarre@sandia.gov
http://dx.doi.org/10.1016/j.jpdc.2014.09.006

108 RF. Barrett et al. / ]. Parallel Distrib. Comput. 75 (2015) 107-122

impact the runtime performance of a scientific or engineering ap-
plication program.

These miniapps enable rapid exploration of key performance
issues that impact a broad set of scientific application programs.
Within the Department of Energy (DOE) they are being used to
explore the above issues by a broad set of participants, including
staff at DOE laboratories, universities, and vendors. Yet how can
we be sure that these proxies adequately represent that which they
are intended?

The key contribution of the work described herein is a method-
ology, rooted in formal verification and validation (V&V) efforts
that have been developed for experimental science, for determin-
ing the quality of the miniapp as it pertains to a large, complex
application code. We applied this methodology to three miniapps,
examining the linkage between them and an application they
are intended to represent. Herein we evaluate the fidelity of that
linkage. This work represents the initial steps required to begin
to answer the question, “Under what conditions does a miniapp
represent a key performance characteristic in a full app?”

1.1. Related work

Application proxies have been part of the code developers’
tool kit for many years. The LINPACK benchmark came into ex-
istence [12] as what we are now calling a miniapp. Sweep3d [1],
sPPM [4], and the NAS benchmarks [5] in some sense may also be
viewed in these terms. Large scale proxies, such as LULESH [18],
are serving related purposes. The three DOE Office of Advanced Sci-
entific Computing Research (ASCR) Co-Design Centers! (ExMatEx,
CESAR, and ExaCT) have identified the development of proxy ap-
plications as a key component of their efforts. Miniapps, and other
kinds of application proxies, are being used as part of machine
procurements.” The Mantevo project [16] solidifies the applica-
tion proxy idea, bringing a community-based focused effort to bear
on the wide variety of explorations that application proxies can
enable.

The validation methodology presented herein is the first formal
means, that we are aware of, for understanding if, and how, an
application proxy may be used to represent the behavior of a full
application program. This work is strongly informed by techniques
developed for experimental validation, as will be discussed in the
following sections.

2. Overview of the Mantevo project

The Mantevo project [16] was motivated by questions arising
from the Trilinos project [15]. These questions concerned the
direction of some coding implementations targeting emerging and
expected future architectures, including multi-core, many-core,
and GPU-accelerated high performance computers. The goal was
to create a suite of tools that placed important algorithms into an
application-relevant context, enabling rapid exploration of issues
and options and their mapping to computing platforms.

Mantevo miniapps are designed and developed to be a tool, use-
ful throughout the co-design space [13], enabling agile exploration
of a variety of issues that impact performance. Unlike a compact
application, which is designed to capture some sort of physics be-
havior, miniapps are designed to capture some key performance
issues in full applications. Unlike a skeleton application, which is

1 http://science.energy.gov/ascr/research/scidac/co-design/.
http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-
benchmarks/.

Table 1
List of Mantevo miniapps, release 1.0.

Miniapp Description

CloverLeaf Solves the compressible Euler equations on a Cartesian grid,
using an explicit, second-order accurate method.

CoMD A simple proxy for the computations in a typical molecular
dynamics application. The reference implementation mimics
that of SPaSM.

HPCCG Intended to be the best approximation to an unstructured
implicit finite element or finite volume application in 800
lines or fewer.

miniFE A proxy for unstructured implicit finite element codes. It is
similar to HPCCG but provides a much more complete vertical
covering of the steps in this class of applications.

miniGhost A difference stencil across a homogeneous three dimensional
domain, targeting the inter-process communication halo
exchange operation.

miniMD The force computations in a typical molecular dynamics
applications. The algorithms and implementation used closely
mimic these same operations as performed in LAMMPS.

miniXyce SPICE-style circuit simulator [24].

designed for only focusing on inter-process communication per-
haps involving a “fake” computation, miniapps create a meaning-
ful context in which to explore key performance issues. Miniapps
are developed and owned by application code teams. Miniapps are
intended to be modified, and thus are generally limited to a few
thousand source lines of code (SLOC), allowing for unconstrained
modification. Once no longer useful for these purposes, a miniapp
will be discarded. Mantevo miniapps are freely available as open
source software under an LGPL license.

The miniapps in the first release of the Mantevo project are
listed in Table 1. The first miniapp was HPCCG, which formed and
solved a sparse linear system of equations. Although it provides an
important capability, it was soon realized that in order to provide
a stronger tie to applications of interest, the context in which
the linear system is formed needed strengthening. The result was
miniFE, putting the linear system into the context of an implicit
finite element solver. Thus although HPCCG continues to serve an
important role, miniFE will be examined in detail for purposes
herein. We anticipate that this sort of situation will continue to
occur as these miniapps are used in different situations.

3. Methodology

Miniapps are designed to provide a predictive capability for
some key performance issue in a full application. Ensuring that a
miniapp completely fulfills its intent is a difficult and probably an
ongoing task. Further, the runtime behavior of a complex scientific
application is typically problem dependent, and therefore it is
important to understand the different ways that a code can be
used and have a means for configuring the miniapp to mimic the
important features under consideration. Thus our approach is to
build up a “body of evidence” in support of the goals of a miniapp,
combining formal verification and validation (V&V) techniques
with our knowledge and experience bases.

Verification is the process of determining that a model
implementation accurately represents the developer’s conceptual
description of the model and the solution to the model. Validation
is the process of determining the degree to which a model is
an accurate representation of the “real world” (in this case the
performance characteristics of the “real” application) from the
perspective of the intended uses of the model. These terms are so
defined by the American Society of Mechanical Engineers (ASME,
2006) and the American Institute of Aeronautics and Astronautics
(AIAA, 1998), and this usage has basically been adopted by the
United States DOE and Department of Defense (DoD). That is,
within the context of the intent of the comparisons of a model


http://science.energy.gov/ascr/research/scidac/co-design/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/

Download English Version:

https://daneshyari.com/en/article/432687

Download Persian Version:

https://daneshyari.com/article/432687

Daneshyari.com


https://daneshyari.com/en/article/432687
https://daneshyari.com/article/432687
https://daneshyari.com

