
J. Parallel Distrib. Comput. 74 (2014) 2845–2859

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Adaptive thread mapping strategies for transactional memory
applications
Márcio Castro a,∗, Luís Fabrício W. Góes b, Jean-François Méhaut c
a Federal University of Rio Grande do Sul, Institute of Informatics, Av. Bento Gonçalves, 9500 - Campus do Vale - 91501-970 - Porto Alegre, Brazil
b University PUC-Minas, Computer Science Department, Avenida Dom José Gaspar, 500 - 30535-610 - Belo Horizonte, Brazil
c University of Grenoble, CEA-DRT - LIG Laboratory, ZIRST 51 Avenue Jean Kuntzmann - 38330 - Montbonnot, France

h i g h l i g h t s

• We propose adaptive thread mapping strategies based on single metrics.
• We propose a new strategy based on association rule learning.
• We implement all the proposed adaptive strategies in a TM system.
• We achieved performance improvements of up to 64.4% on a set of synthetic applications.
• We achieved performance improvements of up to 16.5% on the STAMP benchmark suite.

a r t i c l e i n f o

Article history:
Received 15 June 2013
Received in revised form
25 April 2014
Accepted 28 May 2014
Available online 9 June 2014

Keywords:
Transactional memory
Thread mapping
Adaptivity
Multicore

a b s t r a c t

Transactional Memory (TM) is a programmer friendly alternative to traditional lock-based concurrency.
Although it intends to simplify concurrent programming, the performance of the applications still relies
on how frequent they synchronize and the way they access shared data. These aspects must be taken
into consideration if one intends to exploit the full potential of modern multicore platforms. Since these
platforms feature complex memory hierarchies composed of different levels of cache, applications may
suffer from memory latencies and bandwidth problems if threads are not properly placed on cores. An
interesting approach to efficiently exploit the memory hierarchy is called thread mapping. However, a
single fixed thread mapping cannot deliver the best performance when dealing with a large range of
transactional workloads, TM systems and platforms. In this article, we propose and implement in a TM
system a set of adaptive threadmapping strategies for TM applications to tackle this problem. They range
from simple strategies that do not require any prior knowledge to strategies based on Machine Learning
techniques. Taking the Linux default strategy as baseline, we achieved performance improvements of up
to 64.4% on a set of synthetic applications and an overall performance improvement of up to 16.5% on the
standard STAMP benchmark suite.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There was a 30-year period in which the advances in semi-
conductor technology and computer architectures improved the
performance of a single processor at a high annual rate of 40% to
50% [21]. However, issues such as dissipating heat from increas-
ingly densely packed transistors began to limit the rate at which
processor frequencies could be increased. This was one of themain

∗ Corresponding author.
E-mail addresses:mbcastro@gmail.com, mbcastro@inf.ufrgs.br (M. Castro),

lfwgoes@pucminas.br (L.F.W. Góes), jean-francois.mehaut@imag.fr (J.-F. Méhaut).

reasons why most of semiconductor manufacturers are now in-
vesting in multicore processors [2].

Consequently, applications must now evolve to efficiently ex-
ploit the potential of multicore platforms. Sequential applications
thus need to be split into pieces (e.g., tasks) that can be executed
in parallel by threads, each one running on a processor/core [17].
The side effect is that the application data, which were accessed by
a single thread on a sequential application, is now shared among
several concurrent threads. Thus, it is necessary to use synchro-
nization mechanisms to coordinate concurrent accesses to these
shared data.

Traditional synchronization mechanisms such as locks,mutexes
and semaphores have been proven to be more error-prone [13],

http://dx.doi.org/10.1016/j.jpdc.2014.05.008
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.05.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.05.008&domain=pdf
mailto:mbcastro@gmail.com
mailto:mbcastro@inf.ufrgs.br
mailto:lfwgoes@pucminas.br
mailto:jean-francois.mehaut@imag.fr
http://dx.doi.org/10.1016/j.jpdc.2014.05.008


2846 M. Castro et al. / J. Parallel Distrib. Comput. 74 (2014) 2845–2859

largely due to well-known problems such as deadlocks and live-
locks [25], and are difficult tomanage in large scale systems. Due to
those issues, researchers have been looking for alternative mech-
anisms. One of such mechanisms that has been subject of intense
research in the last years is Transactional Memory (TM) [16,10].
The TM programmingmodel allows programmers to write parallel
portions of the code as transactions, which are guaranteed to exe-
cute atomically and in isolation regardless of eventual data races.
At runtime, transactions are executed speculatively and the TM
runtime system continuously keeps track of concurrent accesses
anddetects conflicts. Conflicts are then solved by re-executing con-
flicting transactions. This model removes from the programmer
the burden of correct synchronization of threads and provides a
straightforward way of extracting parallelism from applications.

Although the TM programming model simplifies concurrent
programming, the performance of TM applications on multicores
still relies on how frequent they synchronize, the amount of con-
tention (conflicts between transactions) and the way transactions
access shared data on memory (memory access pattern) [5]. In or-
der to alleviate the cost of accessing the main memory, multicore
processors usually feature complexmemory hierarchies composed
of different levels of cache (private and shared). As a drawback, this
can potentially increasememory access latency and degrade band-
width usage if threads are not properly placed on cores.

An appealing approach to efficiently exploit the memory hier-
archy and alleviate these drawbacks is called thread mapping [18],
which places threads on specific cores according to a predeter-
mined strategy. However, the efficiency obtained from a thread
mapping strategy relies upon matching the behavior of the ap-
plication with the underlying system and platform characteristics.
This issue becomesmuchmore complex in TM due to two reasons:
(i) the TM model uses speculation, hence TM applications present
an irregular behavior (data dependencies between threads are only
known at runtime); and (ii) each TM system implements its own
mechanisms to detect and solve conflicts and thus the same TMap-
plication can behave differently when the underlying TM system is
changed [7,4].

Due to the aforementioned issues, a single fixed thread map-
ping (which does not adapt itself to the current workload) can-
not deliver the best performance in all cases. For instance, in some
workloads it would be better to place threads on cores as close as
possible in the cache hierarchy to increase cache sharing; while
for others it would be better to distribute threads among dif-
ferent processors to reduce memory contention. Because of that,
adaptivity becomes a key feature to increase performance for a
wide range of different workload characteristics and platforms.
Adaptivity has been studied in different contexts as a means of:
performing dynamic load balancing on MPI [20]; generating and
selecting a specific multithreaded version for a given loop at run-
time on OpenMP [9]; and automatically selecting a TM algorithm
adapted to the workload [28].

As opposed to those previously cited adaptive approaches, in
this article we exploit adaptivity in the context of thread mapping.
Since we are particularly interested in TM, we propose different
adaptive threadmapping strategies that consider information from
the TM application, TM system and multicore platform.

These strategies can be split into two categories: (i) strategies
that do not require any prior knowledge; and (ii) strategies that
require prior knowledge based on Machine Learning (ML) tech-
niques. Castro et al. [7,6] proposed and evaluated a strategy that
used ML to perform static and dynamic thread mapping on TM
applications, showing promising results. However, the proposed
approach was evaluated against simple non-adaptive thread map-
ping strategies that do not consider any information from the TM
application, TM system and platform. In this article, we perform
a more thorough evaluation of these previous works, comparing
them to other new adaptive approaches.

Overall, the contributions of this article are:

• Wepropose two adaptive threadmapping strategies that do not
require any prior knowledge from TM applications;
• We propose a new strategy based on association rule learning;
• We extend the work presented in [6] by comparing its

performance results to those obtained with those new adaptive
strategies;
• We implement all the proposed adaptive strategies in a TM

system, so TM applications can benefit from adaptive thread
mapping without any source code modification.

The rest of this paper is organized as follows. Section 2 presents
the background and motivation for this research. Section 3
describes the proposed adaptive thread mapping strategies.
Section 4 discusses the implementation details on a state-of-the-
art TM system. Section 5 outlines our experimental methodology
while Section 6 presents results. Finally, Section 7 discusses related
work and Section 8 concludes the paper and points out future
work.

2. Background and motivation

We first present the basic concepts of Transactional Memory in
Section 2.1. Then, we discuss thread mapping and motivate this
research in Section 2.2.

2.1. Transactional memory (TM)

Transactional Memory is an alternative synchronization solu-
tion to classic mechanisms such as locks and mutexes [25,16].
It makes it easier to write parallel programs by providing the
programmer with a higher-level abstraction for synchronization,
while leaving the implementation of the mechanism that provides
this abstraction to the underlying system. Moreover, it provides an
efficient model for extracting parallelism from applications [21].

Transactions are portions of code that are executed atomically
and in isolation. Concurrent transactions commit successfully if
their accesses to shared data do not conflict with each other.When
one or more concurrent transactions conflict, only one transaction
will commit whereas the otherswill abort and none of their actions
will become visible to other threads [21]. Conflicts can be detected
during the execution of transactions when the TM system uses an
eager conflict detection policywhereas they are detected at commit-
timewhen the systemuses a lazy conflict detection policy. However,
some TM systems also allow lazy transactions to detect conflicts
before committing: this may be the case in which one conflicting
transaction commits while the other is still running. In this case,
the TM system may abort the running transaction due to the
conflict with the committing transaction.

The TM system is in charge of re-executing aborted trans-
actions. The choice among the conflicting transactions is done
according to the conflict resolution policies implemented in the run-
time system. Two common alternatives are to squash the transac-
tion that discovers the conflict immediately (suicide strategy) or to
wait for a time interval before restarting the conflicting transaction
(backoff strategy).

Transactional Memory can be software-only (STM), hardware-
only (HTM) or hybrid (HyTM) [16]. In this article we focus on STM,
since it offers flexibility in implementing different mechanisms to
detect and resolve conflicts and it does not require any specific
hardware. STM allows us to carry out experiments on actual
multicore platforms without relying on simulations.



Download English Version:

https://daneshyari.com/en/article/432710

Download Persian Version:

https://daneshyari.com/article/432710

Daneshyari.com

https://daneshyari.com/en/article/432710
https://daneshyari.com/article/432710
https://daneshyari.com

