
J. Parallel Distrib. Comput. 74 (2014) 2872–2883

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Shield: A stackable secure storage system for file sharing in
public storage
Jiwu Shu ∗, Zhirong Shen, Wei Xue
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

h i g h l i g h t s

• We propose a new system architecture for secure file sharing in cloud scenario.
• We implement a stackable secure storage system named Shield.
• A hierarchical key organization is designed for convenient keys management.
• Shield adopts lazy revocation to accelerate the revocation process.
• Shield supports concurrent write access by employing a virtual linked list.

a r t i c l e i n f o

Article history:
Received 23 September 2013
Received in revised form
8 June 2014
Accepted 10 June 2014
Available online 19 June 2014

Keywords:
Storage system
Cryptographic controls
Keys management
Proxy server
Secure sharing
Permission revocation
Concurrent writes

a b s t r a c t

With the increasing amount of personal data stored in public storage, users are losing control of their
physical data, putting their data information at risk of theft or being compromised. Traditional secure
storage systems either require users to completely trust the storage provider or impose the considerable
burden ofmanaging files on file owners; such systems are inapplicable in the practical cloud environment.
This paper addresses these challenging problems by proposing a new secure system architecture and
implementing a stackable secure storage system named Shield, in which a proxy server is introduced to
be in charge of authentication and access control. We propose a new variant of the Merkle Hash Tree
to support efficient integrity checking and file content update; further, we have designed a hierarchical
key organization to achieve convenient keys management and efficient permission revocation. Shield
supports concurrent write access by employing a virtual linked list; it also provides secure file sharing
without any modification to the underlying file systems. A series of evaluations over various real
benchmarks show that Shield causes about 7%∼13% performance degradation when compared with
eCryptfs but provides enhanced security for user’s data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

As a new kind of online storage over network, cloud storage
delivers elastic storage service and provides virtually unlimited
storage capacity without requiring users to perform complex sys-
tem configurations or buy expensive storage devices. Owing to its
convenience and economy, data owners are willing to concentrate
their data to the cloud.

Although cloud storage dramatically improves the efficiency of
datamanagement, data owners have to sacrifice physical control of

∗ Corresponding author at: Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China.

E-mail addresses: shujw@tsinghua.edu.cn (J. Shu),
zhirong.shen2601@gmail.com, czr10@mails.tsinghua.edu.cn (Z. Shen),
xuewei@tsinghua.edu.cn (W. Xue).

their data by handing it over to the cloud server, whichmay put the
data information at risk of theft or being compromised caused by
unauthorized access. Derived from this worry, the research reports
on data leaks have increasingly emerged in recent years, causing
public concern about the security when their sensitive data are
stored in the public storage. The report released by IDC [8] further
points out that data security have been treated as a top priority in
cloud computing.

Many secure storage systems [15,17,13,40,3,14,16,19] have
been proposed for protecting data security by using several key
technologies such as encrypt-on-disk [17], but most of them are
mostly based on the outdated models of either requiring the cloud
server to be completely trusted [28,25] to execute access con-
trol and key distribution, or needing file owners to actively man-
age security themselves [17,26] (i.e. only trusting themselves and
deal with users’ access requests by themselves). However, the two

http://dx.doi.org/10.1016/j.jpdc.2014.06.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.06.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.06.003&domain=pdf
mailto:shujw@tsinghua.edu.cn
mailto:zhirong.shen2601@gmail.com
mailto:czr10@mails.tsinghua.edu.cn
mailto:xuewei@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2014.06.003


J. Shu et al. / J. Parallel Distrib. Comput. 74 (2014) 2872–2883 2873

extreme trust models, complete trust or no trust, either invite
potential security threats or involve significant inconveniences.
When the cloud server is given complete trust, users may worry
about the status of their sensitive data once the cloud server does
not behave neutrally or is fully controlled by hackers, and the cloud
server may also fear to get into the risks of economic disputes and
reputation losses, once user’s data are leaked because of either sud-
den accidents or careless operations. In another case, if file owners
are required to bear the burden of trusting themselves, they will
be forced to be always online to handle access requests and exe-
cute access control, causing a considerable management burden.
There are extra works that make some impressive efforts to allevi-
ate the shortcomings of the above two architectures. For example,
Castiglione et al. [5] try to move the management burden to users
by utilizing secret sharing mechanism. They require any data ac-
cess should receive the permissions from at least k users. However,
it may also introduce considerable computation and management
burden to users. Though anotherwork [7] introduces a generic cre-
dential authority to manage keys and enforce access control. Users
in this architecture are responsible for keys management for the
version signature. This may cause considerable management bur-
den once a user joins many groups. Meanwhile, it also introduces
many public-key encryption computations, which are far more ex-
pensive than symmetric-key encryption.

To address these problems, we analyze the threat models of file
sharing among multiple users in public storage, establish a new
trust system, andpropose a new systemarchitecture inwhich users
can store files and share them efficiently under multi-party shared
public storage andnetwork environments. Based on this architecture,
we develop a stackable secure storage systemnamed Shield, which
strives to provide secure file sharing and free file owners from
cumbersome keys management in the cloud scenario. To improve
portability, Shield requires no modification to the file system and
can be directly deployed on top of existing file systems to provide
extended end-to-end security and efficient access control, both of
which are independent of cloud storage systems or administrators.

In addition, to prevent the cloud server from accessing plaintext
when encrypting/decrypting data, Shield migrates operations of
data encryption/decryption and integrity checking to be performed
at the client side. This change also benefits the scalability of the
whole system. Moreover, Shield concentrates on the mechanisms
that provide efficient permission revocation and support write
concurrency when data files are shared among multiple users. Our
contributions are as follows:

First, we propose a new architecture for secure file sharing that
neither places complete trust over the cloud server nor imposes
cumbersome management burdens on file owners. In this archi-
tecture, we use the proxy server (PS) to manage access control and
distribute secret keys. To avoid the problem of the PS being a bot-
tleneck, a PS-Group can be easily constructed to decrease the bur-
den and trust over every individual PS.

Second, we develop a hierarchical key organization to lighten
the complexity of keysmanagement, design a variant of theMerkle
Hash Tree (MHT) for integrity checking, adopt lazy revocation to
improve the efficiency of revocation operations, and exploit the
virtual hash linked list to support concurrent writing to a file.

Third, by employing some representative benchmarks, inten-
sive tests are conducted to evaluate the performance of Shield. The
final results show that Shield causes about 7%–13% performance
degradation when compared with eCryptfs but provides enhanced
security and a single PS can support more than 45,000 users’ re-
quests in one second.

The remainder of the paper continues as follows:We review the
related work in Section 2, describe the design goals and assump-
tions in Section 3, and introduce the key techniques in Section 4.
Section 5 describes the protocols for file reading, file writing, and

permission revocation. Subsequently, we analyze the security of
Shield in Section 6, discuss its implementation in Section 7, and
evaluate its performance in Section 8. Finally, we conclude our
work in Section 9.

2. Related work

CFS [3] is the earliest work of encrypt-on-disk file systems,
which uses a single key to encrypt the whole file directory. As
its variants, Cryptfs [40], Cepheus [32], and TCFS [6] are proposed
later. Cryptfs associates symmetric keys and file groups, allowing
group file sharing. Cepheus introduces a lockbox for group man-
agement and firstly proposes lazy revocation. TCFS designs trans-
parent cryptographic file systems by integrating the encryption
service with file systems. However, all of themmiss the considera-
tions of read–write differentiation and lack an efficient keys man-
agement mechanism.

To supportwide file sharing service, NCryptfs [37] implemented
at the kernel level supports multi-user sharing on the same ma-
chine. The Swallow [30] implements access control by executing
encryption at the client level. However, Swallowneither offers file-
sharing nor differentiates read–write operations. NASD [14] pro-
vides data security for network-attached storage. It keeps data in
the form of plaintext and the security guarantee requires the par-
ticipation of storage devices.

SFS [25] has to rely on the trusted server to enforce access con-
trol. It provides authentication for remote file systems, and the
communication channel with the server is encrypted by a session
key. CryptosFS [28] also trusts the storage servers to verify user’s
access and uses public-key encryption instead of existing access
control mechanism in NFS to regulate user’s access. Derived from
CryptosFS, eCryptfs [16] is designed to enforce data confidentiality
on secondary storage belonging to a single host, however, it cannot
support file sharing because of the absence of keys management
and access control.

With the system scales up, the data reliability and durabil-
ity becomes important design criteria for large storage systems.
OceanStore [20] and FARSITE [1] mainly focus on the availability
and fault-tolerance while providing security for those distributed
file systems. To protect long-term data, POTSHARDS [33] uses se-
cret splitting and approximate pointers to secure data, which may
only be cracked after decades, and SafeStore [19] spreads data
across autonomous SSPs using informed hierarchical erasure cod-
ing to increase data durability.

The Secure Untrusted Data Repository (SUNDR) [24] relies on a
storage server to execute access controlwhile providing data confi-
dentiality with per-file key encryption and file integrity with hash
trees. PCFS [12] is a file system with proof-carrying authorization
that provides access control with policy support by formal proof
and capability. Maat [21] is designed for object-based storage and
it uses extended capabilities, automatic revocation and secure del-
egation to secure distributed file systems. SNAD [26] employs a
lockbox to protect integrity. However, neither Maat nor PCFS can
provide on-disk security, leaving data exposed to adversaries.
What is more, all of SUNDR [24], SNAD [26] and Maat [21] require
new types of storage servers, while Shield does not demand a new
infrastructure and allows users to manage their own access with-
out relying on storage servers.

Besides disordering data by encryption, some representative
works protect data security by forbidding the illegal access to the
data. I3FS [29] is a file systemwith build-in integrity checking that
uses cryptographic checksums to provide integrity validation for
files. Kerberos [27] provides authentication service for clients in
insecure network environments. Clients have to interact with AS
(Authentication Server) and TGS (Ticket Granting Server) for au-
thentication before applying for this service.



Download English Version:

https://daneshyari.com/en/article/432712

Download Persian Version:

https://daneshyari.com/article/432712

Daneshyari.com

https://daneshyari.com/en/article/432712
https://daneshyari.com/article/432712
https://daneshyari.com

