
J. Parallel Distrib. Comput. 74 (2014) 2548–2560

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Looking back at dense linear algebra software
Piotr Luszczek a, Jakub Kurzak a, Jack Dongarra a,b,c,∗

a University of Tennessee Knoxville, United States
b Oak Ridge National Laboratory, United States
c University of Manchester, United Kingdom

h i g h l i g h t s

• Growing gap of processor–memory communication affects linear algebra software.
• CPU/GPU hybridization creates challenging design combinations for legacy libraries.
• Loop restructuring methods include vectorization, chaining, blocking, and tiling.
• Scheduling techniques cover bulk-synchronous, SPMD, asynchronous, and dataflow.
• The effects of increased parallelism on numerical properties are briefly discussed.

a r t i c l e i n f o

Article history:
Received 17 July 2013
Accepted 28 October 2013
Available online 4 December 2013

Keywords:
Decompositional approach
Parallel algorithms
Dense linear algebra

a b s t r a c t

Over the years, computational physics and chemistry served as an ongoing source of problems that
demanded the ever increasing performance from hardware as well as the software that ran on top of it.
Most of these problems could be translated into solutions for systems of linear equations: the very topic
of numerical linear algebra. Seemingly then, a set of efficient linear solvers could be solving important
scientific problems for years to come. We argue that dramatic changes in hardware designs precipitated
by the shifting nature of the marketplace of computer hardware had a continuous effect on the software
for numerical linear algebra. The extraction of high percentages of peak performance continues to require
adaptation of software. If the past history of this adaptive nature of linear algebra software is any guide
then the future themewill feature changes as well – changes aimed at harnessing the incredible advances
of the evolving hardware infrastructure.

Published by Elsevier Inc.

1. Introduction

Over the decades, dense linear algebra has been an indispens-
able component of science and engineering. While the mathemat-
ical foundations and application methodology has changed little,
the hardware has undergone a tumultuous transition. The latter
precipitated a number of paradigm shifts in the way the linear
algebra software is implemented. Indeed, the ever evolving hard-
ware would quickly render old code inadequate in terms of perfor-
mance. The external interfaces to the numerical software routines
have undergone only minor adjustment which is in line with the
unchanged mathematical formulation of the problem of solving a
system of linear equations. The internal implementation of these
interfaces was changing to accommodate drastic redesign of the
underlying hardware technology. The internals have been modu-
larized to ease the implementation process. These modules over

∗ Corresponding author at: University of Tennessee Knoxville, United States.
E-mail addresses: luszczek@eecs.utk.edu (P. Luszczek), kurzak@eecs.utk.edu

(J. Kurzak), dongarra@cs.utk.edu, julie@cs.utk, dongarra@eecs.utk.edu
(J. Dongarra).

time have become the building blocks of new generations of the
numerical linear algebra libraries and made the effort more man-
ageable in the long run. Over time, the number and functionality
of these building blocks have increased but the delegation of re-
sponsibilities between various modules inside the software stack
has been retained. The most recent increase in hardware paral-
lelism further altered the established composition process of the
modules by necessitating the use of explicit schedulingmechanism
which needed to be handled manually in the composing code or
externally with a software scheduler. The rapid transformation of
computer hardware has not been ongoing and is expected to be
continuing into the future.With it, the software will evolve further
and our hope is that the design decision made in the past will al-
low for a smooth transition by reusing the tested and optimized
libraries we have become accustomed to.

2. Motivation: plasma physics and electronic structure calcula-
tion

Computational experiments of self-sustaining fusion reactions
could give us an informed perspective on how to build a device
capable of producing and controlling the high performance [3].

0743-7315/$ – see front matter. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jpdc.2013.10.005

http://dx.doi.org/10.1016/j.jpdc.2013.10.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.10.005&domain=pdf
mailto:luszczek@eecs.utk.edu
mailto:kurzak@eecs.utk.edu
mailto:dongarra@cs.utk.edu
mailto:julie@cs.utk
mailto:dongarra@eecs.utk.edu
http://dx.doi.org/10.1016/j.jpdc.2013.10.005


P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2549

Modeling the heating response of plasma due to radio frequency
(RF) waves in the fast wave time scale leads to solving the gener-
alized Helmholtz equation. The time harmonic terms of effective
approximations of the electric field, magnetic field, and distribu-
tion function as a time-averaged equilibrium satisfy the equation.
The Scientific Discovery through Advanced Computing project
(SciDAC) Numerical Computation of Wave Plasma-Interactions in
Multi-dimensional Systems developed and implemented a simula-
tion code that gives insight into how electromagnetic waves can be
used for driving current flow, heating and controlling instabilities
in the plasma. The code is called AORSA [21–23,19,5] and stands for
All ORders Spectral Algorithm. The resulting computation requires
a solution of a system of linear equations exceeding half a million
unknowns [4].

In quantum chemistry, most of the scientific simulation codes
result in a numerical linear algebra problem that may readily
be solved with the ScaLAPACK library [6,8]. For example, early
versions of ParaGauss [32,27,31,24] relied on diagonalization
of the Kohn–Sham matrix and the parallelization method of
choice relied on the irreducible representations of the point
group. The submatrices diagonalize in parallel and the number
of them depended on the symmetry group. When using one
of ScaLAPACK’s parallel eigensolvers it is possible to achieve
speedup even for a Kohn–Sham matrix with only one block.
A different use of the BLAS library occurs in UTChem [36]—an
application code that collects a number of methods that allow
for accurate and efficient calculations for computational chemistry
of electronic structure problems. Both the ground and excited
states of molecular systems are covered. In supporting a number
of single-reference many-electron theories such as configuration-
interaction theory, coupled-cluster theory, and Møller–Plesset
perturbation theory, UTChem derives working equations using a
symbolic manipulation program called Tensor Contraction Engine
(TCE) [25]. It automates the process of deriving final formulas
and generation of the execution program. The contraction of
creation and annihilation operators according to Wick’s theorem,
consolidation of identical terms, and reduction of the expressions
into the form of tensor contractions controlled by permutation
operators are all done automatically by TCE. If tensor contractions
are treated as a collection of multi-dimensional summations of the
product of a few input arrays then the commutative, associative,
and distributive properties of the summation allow for a number
of execution orders, each of which having different execution
rates when mapped to a particular hardware architecture. Also,
some of the execution orders would result in calls to BLAS, which
provides a substantial increase in floating-point execution rate.
The current TCE implementation generatesmany-electron theories
that are limited to non-relativistic Hartree–Fock formulation with
referencewave functions but it is possible to extend it to relativistic
2- and 4-component reference wave functions.

3. Problem statement in matrix terms

Most dense linear systems solvers rely on a decompositional
approach [33]. The general idea is the following: given a problem
involving a matrix A, one factors or decomposes A into a product
of simpler matrices from which the problem can easily be solved.
This divides the computational problem into two parts: first
determine an appropriate decomposition, and then use it in solving
the problem at hand. Consider the problem of solving the linear
system:

Ax = b (1)

where A is a non-singular matrix of order n. The decompositional
approach begins with the observation that it is possible to factor A
in the form:

A = LU (2)

where L is a lower triangular matrix (a matrix that has only
zeros above the diagonal) with ones on the diagonal, and U is
upper triangular (with only zeros below the diagonal). During the
decomposition process, diagonal elements of A (called pivots) are
used to divide the elements below the diagonal. If matrix A has
a zero pivot, the process will break with division-by-zero error.
Also, small values of the pivots excessively amplify the numerical
errors of the process. So for numerical stability, the method needs
to interchange rows of the matrix or make sure pivots are as large
(in absolute value) as possible. This observation leads to a row
permutation matrix P and modifies the factored form to:

PA = LU . (3)

The solution can then be written in the form:

x = A−1Pb (4)

which then suggests the following algorithm for solving the system
of equations:

• Factor A according to Eq. (3)
• Solve the system Ly = Pb
• Solve the system Ux = y.

This approach to matrix computations through decomposition has
proven very useful for several reasons. First, the approach sepa-
rates the computation into two stages: the computation of a de-
composition, followed by the use of the decomposition to solve
the problem at hand. This can be important, for example, if differ-
ent right hand sides are present and need to be solved at different
points in the process. The matrix needs to be factored only once
and reused for the different right hand sides. This is particularly
important because the factorization of A, step 1, requires O(n3) op-
erations, whereas the solutions, steps 2 and 3, require only O(n2)
operations. Another aspect of the algorithm’s strength is in stor-
age: the L and U factors do not require extra storage, but can take
over the space occupied initially by A. For the discussion of coding
this algorithm, we present only the computationally intensive part
of the process, which is step 1, the factorization of the matrix.

Decompositional technique can be applied to many different
matrix types:

A1 = LLT A2 = LDLT PA3 = LU A4 = QR (5)

such as symmetric positive definite (A1), symmetric indefinite (A2),
square non-singular (A3), and general rectangular matrices (A4).
Each matrix type will require a different algorithm: Cholesky fac-
torization, Cholesky factorization with pivoting, LU factorization,
and QR factorization, respectively.

4. Introducing LU : a simple implementation

For the first version, we present a straightforward implemen-
tation of LU factorization. It consists of n-1 steps, where each step
introduces more zeros below the diagonal, as shown in Fig. 1.

Tools often used to teach Gaussian elimination includeMATLAB
and Python. They are scripting languages that make developing
matrix algorithms very simple. The notation might seem very
unusual to people familiar with other scripting languages because
it is oriented to process multi-dimensional arrays. The unique
features of the language that we use in the example code are:

• Transposition operator for vectors andmatrices: ’ (single quote)
• Matrix indexing specified as:

– Simple integer values: A(m, k)
– Ranges: A(k:n, k)
– Other matrices: A([k m], :)



Download English Version:

https://daneshyari.com/en/article/432717

Download Persian Version:

https://daneshyari.com/article/432717

Daneshyari.com

https://daneshyari.com/en/article/432717
https://daneshyari.com/article/432717
https://daneshyari.com

