J. Parallel Distrib. Comput. 74 (2014) 2574-2581

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

What is ahead for parallel computing

Wen-mei Hwu

University of Illinois at Urbana-Champaign, United States

CrossMark

@

HIGHLIGHTS

A practical classification of levels of challenges in parallel algorithms.

A detailed real example of a highly optimized parallel GPU algorithm.

A clear articulation of what makes parallel algorithms hard in multicores and manycores.

An overview of practical techniques for improving parallel algorithm scalability and efficiency.

ARTICLE INFO ABSTRACT

Article history:

Received 2 October 2013
Received in revised form

13 February 2014

Accepted 13 February 2014
Available online 12 March 2014

With the industry-wide switch to multicore and manycore architectures, parallel computing has become
the only venue in sight for continued growth in application performance. In order for the performance
of an application to grow with future generations of hardware, a significant portion of its computation
must be done with scalable parallel algorithms. It is therefore important to develop and deploy as many
scalable parallel algorithms as possible. This paper takes a critical look at the major challenges involved
in the development of scalable parallel algorithms and points to needs for compiler tool innovations to
help address these challenges.

Keywords:

Parallel algorithms
Parallel data structures
Locality

Memoryicore bandwidth
GPU

Multicore

Algorithm optimization
Algorithm library

Data layout

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

With the industry-wide switch to multicore and manycore ar-
chitectures, parallel computing has become the only venue in sight
for continued growth in application performance. In order for the
performance of an application to grow with future generations of
hardware, a significant portion of its computation must be done
with scalable parallel algorithms. It is therefore important to de-
velop and deploy as many scalable parallel algorithms as possible.

So, why this is different from what the high-performance
computing community has been working on in the past several
decades? A simple answer is that the bulk of the prior work was
along the lines of performing domain partitioning and use serial
algorithms on each partition. While this approach has been very ef-
fective in allowing the science community to address increasingly
larger problems using increasingly larger clusters, it has not made

E-mail address: w-hwu@illinois.edu.

http://dx.doi.org/10.1016/j.jpdc.2014.02.005
0743-7315/© 2014 Elsevier Inc. All rights reserved.

significant progress in parallelizing the algorithms used in each
computing node. A good example is that many Intel Math Kernel Li-
braries are still only in sequential form when asked to solve a single
large problem. What we need to do this time around is to introduce
parallel algorithms into each computing node.

The next question is what makes the parallel algorithms for
multicore and manycore processors challenging? As it turns out,
the main challenges arise from the fact that the rate at which mem-
ory data can be accessed by the processor chips is much lower than
the rate at which arithmetic operations can be performed on the
chip. A closer look into the standard organization of the memory
system further reveals that data accesses need to be highly regular
in order for the data to be delivered to the processor at a rate close
to the advertised rate. Today, these deficiencies are compelling
parallel algorithm designers to resort to highly sophisticated data
locality and regularization techniques, thereby drastically com-
plicating their algorithms. A legitimate question is whether such
deficiency will simply disappear as the technologies advance. Un-
fortunately, the trend is in the opposite direction, as I will explain
in more detail below.


http://dx.doi.org/10.1016/j.jpdc.2014.02.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.02.005&domain=pdf
mailto:w-hwu@illinois.edu
http://dx.doi.org/10.1016/j.jpdc.2014.02.005

W.-m. Hwu /]. Parallel Distrib. Comput. 74 (2014) 2574-2581 2575

1. Three important trends in computing platforms

In general, I see three important trends in technologies and
computing platforms. First, the on-chip execution resource is
growing faster than the off-chip memory bandwidth. While the on-
chip execution resources have been growing with Moore’s law, the
off-chip memory bandwidth has been held back by the slow evo-
lution of DRAM architecture and the monitory and energy cost of
1/O pins of chip packaging. We are at the point where about eight
arithmetic operations need to be performed for each byte of data
being brought on chip in order to fully utilize the execution capac-
ity of manycore chips. This is in sharp contrast to the long-held rule
of one floating-point operation for each byte of data in the High-
Performance Computing (HPC) community. Unfortunately, the gap
is expected to increase rather than decrease in future generations
of computing devices. The reason is that the cost of increasing off-
chip memory bandwidth is increasing much faster than the cost
of increasing on-chip execution resource. This compels algorithm
designers to keep as much data in the on-chip memory as possi-
ble for re-use, both across parallel threads and within each thread.
Unfortunately, this is an increasingly challenging endeavor due to
the next important trend.

The second trend is that the amount of on-chip memory is
growing slower than the amount of on-chip execution resource.
Unfortunately, traditional cache memories have shown to have
diminishing return, where doubling the cache size does not cut
the miss rate by two but rather by square root of two [4]. Due
to the pressure to provide more computing power to demanding
applications, vendors of both CPUs and GPUs are increasing on-
chip execution rates faster than on-chip memory. This has incurred
high pressure on algorithm designs. For many-core chips, the
recent NVIDIA Kepler GK110 GPU has 256 kB of registers, 64 kB
of configurable L1/Shared Memory, and 48 kB in each Streaming
Multiprocessor (SMX). It also has 1536 kB of L2 cache that is
shared among 15 Streaming Multiprocessors [9]. Among all 15
Streaming Multiprocessors, there is a total of 1904 kB of on-chip
memory. While this looks like a large number, this amount of on-
chip memory is shared by up to 30,720 active threads. This leave us
with only 62 bytes of on-chip memory capacity per thread. In many
applications, the most effective way of cutting down the use of
memory bandwidth is to load tiles of data into the on-chip memory
and have all parallel threads to perform their computation on
these data from the shared memory. This approach becomes more
difficult when the amount of available on-chip memory is small.

The third trend is that vectors are playing an increasingly im-
portant role in both memory accesses and arithmetic operations. In
particular, vectorized memory accesses are becoming a key to high
data delivery rate to manycore processors. This is a direct conse-
quence of the increasing DRAM burst size required to achieve spec-
ified data delivery rates. Localized, vector-style data accesses are a
well understood programming style that takes advantage of DRAM
bursts. Programs that are well vectorized in memory accesses can
perform an order of magnitude better than those that are not in to-
day’s manycore processors. The difference is expected to increase
in the future, which will increasingly compel algorithm designers
to regularize the memory access patterns of their algorithms.

2. Life is not fair in parallel computing

Fig. 1 illustrates the efforts to cover parallel portions of the ap-
plications with multicore CPU architectures and manycore GPU
architectures. The center (core) of the cartoon peach picture rep-
resents the sequential portions of the applications. These sequen-
tial portions have been the target of modern instruction-level
parallelism techniques that wring limited amount of parallelism
out of these portions. The latency reduction mechanisms in mod-
ern CPUs, including cache memories, branch predictors, and data

forwarding are important in preserving the instruction-level par-
allelism in these portions.

The orange flesh of the cartoon peach represents the data par-
allel portions of the applications. These portions typically pro-
cess large data sets whose elements can be processed in parallel.
Modern media and data analysis applications tend to have large
data parallel portions. The traditional CPUs do not have sufficient
amount of execution resources to harvest the data parallelism and
achieve dramatic increase in performance. The bump coming out
of the peach core depicts the SIMD or vector extensions to the CPU
instruction set in order to exploit a much higher level of data par-
allelism in CPUs. The trend is to increase the width of the SIMD
instructions to exploit a higher level of parallelism.

The meshed layer in the peach flesh represents the types of
data parallel applications that can be efficiently covered by many-
core architectures today. These applications typically are based on
parallel algorithms that have high-level of data re-use and vector
memory accesses, such as matrix-matrix multiplication, convolu-
tion, and particle-grid calculations. The arrows coming out of the
layer represent efforts to develop new algorithms and/or to add
hardware resources such as more on-chip memory to broaden the
types of applications that can be effectively covered by manycore
architectures.

The main point of Fig. 1 is that there is a large population of
parallel applications that are currently covered neither by CPUs
nor manycore processors. Although these applications are rich in
data parallelism, they lack the regular accesses and data re-use
needed for effective execution by the manycores. The dividing line
between haves and have-nots is whether the algorithms used have
data re-use and regular accesses. New efforts to design algorithms
that exhibit more regular accesses and data re-use are needed for
these applications to run effectively on manycore processors. In
fact, I argue that the same efforts are also needed for these applica-
tions to run effectively on multicore CPUs with wide SIMD exten-
sions.

3. Five levels of challenges in developing parallel algorithms

As we seek to design new parallel algorithms for multicore
and manycore processors, we must understand that applications
present at least five levels of difficulties. I argue that all these
difficulties are equally present whether one programs a many-
core GPU or a multi-core CPU. As long as one is trying to achieve
high performance, energy efficient execution of highly parallel ap-
plications, these challenges must be met. Unfortunately, there is
currently little technology in main stream compilers to help pro-
grammers to meet these challenges.

The most difficult level is that some applications do not have
work-efficient algorithms that have sufficient parallelism. That is,
we simply do not know how to solve the problem with a large num-
ber of parallel execution units without significantly increasing the
computation complexity. Examples of such problems include find-
ing shortest paths between two points in a graph and Delaunay
triangulation of a mesh. In the shortest path problem, all known
parallel algorithms with high levels of parallelism have signifi-
cantly higher complexity, or equivalently much lower work effi-
ciency, compared to the most efficient sequential algorithms. For
large data sets, the increased computational complexity unfortu-
nately results in so much work that the execution time of parallel
algorithms can be slower than sequential algorithms. Unfortu-
nately, large data sets are what make parallel algorithms com-
pelling and thus make the work-inefficient parallel algorithms
impractical.

In Delaunay triangulation, we have speculative algorithms that
exhibit a small amount of parallelism due to the lack of known
methods to divide the mesh into independent parts for large-scale



Download English Version:

https://daneshyari.com/en/article/432719

Download Persian Version:

https://daneshyari.com/article/432719

Daneshyari.com


https://daneshyari.com/en/article/432719
https://daneshyari.com/article/432719
https://daneshyari.com

