
J. Parallel Distrib. Comput. 74 (2014) 2662–2672

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Proactive scheduling in distributed computing—A reinforcement
learning approach
Zhao Tong a, Zheng Xiao a,∗, Kenli Li a, Keqin Li a,b
a College of Information Science and Engineering, Hunan University, Changsha, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Propose the concept and method of proactive scheduling.
• Formulate dynamic scheduling as a MDP problem.
• Develop an online scheduling algorithm based on reinforcement learning.
• Demonstrate our learning-based algorithm stable with lower average response time.

a r t i c l e i n f o

Article history:
Received 11 April 2013
Received in revised form
4 March 2014
Accepted 17 March 2014
Available online 21 March 2014

Keywords:
Distributed computing
Markov decision process
Queueing model
Reinforcement learning
Task scheduling

a b s t r a c t

In distributed computing such as grid computing, online users submit their tasks anytime and anywhere
to dynamic resources. Task arrival and execution processes are stochastic. How to adapt to the consequent
uncertainties, as well as scheduling overhead and response time, are the main concern in dynamic
scheduling. Based on the decision theory, scheduling is formulated as a Markov decision process
(MDP). To address this problem, an approach from machine learning is used to learn task arrival and
execution patterns online. The proposed algorithm can automatically acquire such knowledge without
any aforehand modeling, and proactively allocate tasks on account of the forthcoming tasks and their
execution dynamics. Under comparisonwith four classic algorithms such asMin–Min,Min–Max, Suffrage,
and ECT, the proposed algorithmhasmuch less scheduling overhead. The experiments over both synthetic
and practical environments reveal that the proposed algorithm outperforms other algorithms in terms of
the average response time. The smaller variance of average response time further validates the robustness
of our algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays almost all computers are connected to a local net-
work or the Internet. The networked computers form a COW
(cluster of workstations) or a distributed system. In distributed
computing such as cluster computing and grid computing, online
users submit their tasks anytime and anywhere to dynamic re-
sources. Query processing in database management systems, par-
ticularly in a web-based database, is one that is often encountered
in practice. Many queries arrive stochastically, and their execution
plan has to be scheduled on the processing units with unstable
performance. To determine when and where to dispose of these

∗ Corresponding author.
E-mail addresses: tongzhao1985@yahoo.com.cn (Z. Tong), zxiao@hnu.edu.cn

(Z. Xiao), lkl510@263.net (K. Li), lik@newpaltz.edu (K. Li).

queries is referred to as task scheduling. Task scheduling is critical
in exploiting the potential advantages of parallel and distributed
systems [13].

In the above environments, task arrival and execution processes
are stochastic. We take Google search service as an example to
illustrate its impacts. A large number of users all over the world
send their keyword queries to Google servers. Search engines use
the MapReduce technique to divide a query into several classes of
tasks, and then to map these tasks onto servers for execution. It
involves three kinds of uncertainties.
• It is uncertain when and how many tasks will arrive because

when and what kind of search query a user will initiate is
unknown.
• It is uncertain how long a processing unit will take to execute a

single task due to the dynamics of processors and networks. The
performance of a server varies temporally. The network delay is
hard to evaluate.

http://dx.doi.org/10.1016/j.jpdc.2014.03.007
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.03.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.03.007&domain=pdf
mailto:tongzhao1985@yahoo.com.cn
mailto:zxiao@hnu.edu.cn
mailto:lkl510@263.net
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2014.03.007


Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2663

• It is uncertain how many tasks are waiting in the queues for
execution. As the system is not dedicated, users share all the
processing units.

To adapt to those aforementioned uncertainties is a key to task
scheduling. How to adapt to the consequent uncertainties, as well
as scheduling overhead and response timeliness, are the main
concern in this paper.

Scheduling algorithmsmainly fall into two categories, i.e., static
and dynamic scheduling. Static scheduling [15,18,4,32] originally
emerged in parallel computing. A schedule for a parallel program is
determined during compilation. To date, it means that scheduling
happens before applications’ running. In distributed computing,
static scheduling fails because it is uncertain when and what kind
of tasks may arrive. Instead, scheduling has to happen at runtime
in our case, which is called dynamic scheduling. Because of online
scheduling, the scheduling overhead and response time become
important. But current dynamic scheduling algorithms [6,19,3,30]
either have high scheduling overhead, resulting in a long queue for
task admission [20], or unable to adapt to the uncertainties in task
arrival and execution, leading to lagging response.

To address this problem, our preliminary work [31] tried to
model task arrival and execution processes based on queueing
theory as most scholars did [9,22,25], and proposed a semi-
static scheduling algorithm. But we found that this approach gave
impractical models on task arrival and execution. The performance
gets worse under other models.

How to adapt to those uncertainties is still challenging. In this
paper we use an approach from machine learning to learn task ar-
rival and execution patterns online. In fact, scheduling is a decision
problem.We formulate dynamic scheduling as aMDP (Markov de-
cision process) problem. Because of those uncertainties, reinforce-
ment learning is an effective method to solve an uncertain MDP
problem. The proposed algorithm takes the previous allocations
as training samples and adjusts its policy accordingly. It automati-
cally acquires the knowledge of task arrival and execution with-
out any aforehand modeling, and proactively allocate tasks on
account of the forthcoming tasks and their execution dynam-
ics. Under comparison with four classic algorithms such as
Min–Min [6,3], Min–Max [6,3], Suffrage [19], and ECT [30], the pro-
posed algorithm has much less scheduling overhead. The experi-
ments over both synthetic and practical environments reveal that
the proposed algorithm outperforms other algorithms in terms of
the average response time. The smaller variance of average re-
sponse time further validates the robustness of our algorithm.

This paper makes the following contributions.
• Proposing the concept andmethod of proactive schedulingwith

high adaptability and low scheduling overhead;
• Formulating dynamic scheduling as a MDP problem on account

of the uncertainties of task arrival and execution;
• Developing an online scheduling algorithm based on reinforce-

ment learning, which extremely enhances adaptability to the
uncertainties in distributed computing;
• Demonstrating that our learning-based algorithm has lower

scheduling overhead, effectively reduces the average response
time, and is stable with lower variance.
The remainder of this paper is organized as follows. Section 2

reviews the related work on dynamic scheduling. Section 3
describes the motivation of minimizing the average response
time and proactive scheduling. Section 4 defines the scheduling
problem and formulates it by MDP. Section 5 gives the learning
based scheduling algorithm. Section 6 presents a comparative
study of our algorithms with the related work. Section 7 concludes
this paper.

2. Related work

Task scheduling is a non-trivial problem and well known to
be NP-hard even for non-preemptive scheduling of independent

tasks [27]. As mentioned before, static scheduling makes decision
before runtime. It acquires tasks, their dependency represented by
a DAG (directed acyclic graph), resource performance as a prior
knowledge. However, because of the uncertainties in distributed
computing, such knowledge can only be acquired at runtime.
Traditional static scheduling is not applicable in distributed
computing.

There are two modes in dynamic scheduling for independent
tasks. One is called the batch mode, which starts scheduling after
a batch of tasks have arrived. Min–Min [6,3], Min–Max [6,3], and
Suffrage [19] are three such typical algorithms. In the Min–Min
approach, a scheduler calculates MCTs (minimum completion
times) for tasks in the batch on resources. Then, it maps the task
with the minimal MCT first. In contrast, the task with the maximal
MCT has higher allocation priority in Min–Max. In Suffrage, it
first maps tasks which suffer the most if not allocated right now.
Usually, the suffrage value is the difference between its MCT and
the second MCT. The size of a batch depends on the number of
tasks or a fixed temporal interval. In the batch mode, tasks wait
for scheduling until the size of a batch is reached. So tasks arriving
earlier have to wait, which prolongs task response time. Besides,
the time complexity of such algorithms is proportional to the size
of batch times the number of processing units, because it needs to
compute MCT of all pairs. For these two reasons, the batch mode
algorithms result in high scheduling overhead. Hence, the online
mode arises. Algorithms of this mode schedule a task immediately
after its arrival. ECT is a typical algorithmwhich assigns tasks to the
processing unit of the MCT. This mode nearly takes forthcoming
tasks into account while the batch mode considers several tasks
once making scheduling decision. So the batch mode has limited
adaptability compared with the online mode.

Except for stochastic arrival of tasks, dynamic nature of re-
sources is the other difficulty for task scheduling in distributed
systems [12]. The following methods are usually employed to
estimate task execution like MCT and adapt to the dynamic
nature. (1) On-time information from the third party software
component—For instance, GIS (Grid Information Service) in Grid
is a software component, singular or distributed, that maintains
information about people, software, services, and hardware that
participate in a computational grid, and makes that information
available upon request [1]. (2) Performance prediction—Most algo-
rithms rely on performance estimates when conducting schedul-
ing. Prediction is based on historical record [33] or workload
modeling [7,10]. For example, most works predict resource per-
formance under a queueingmodel [31,9,22,25]. (3) Rescheduling—
Rescheduling changes previous schedule decisions based on a fresh
resource status [24,29]. The method (1) needs extra communica-
tion cost and delay, themethod (2) is hard to ensure providing high
prediction accuracy with a simple algorithm, and themethod (3) is
available on condition that the infrastructure provides job migra-
tion.

Dynamic scheduling is shortsighted. In order to get a global
optimization, scholars proposed new dynamic algorithms to adapt
to the task arrival and execution processes. Grid schedulers
like GridWay [17] and gLite WMS [16] only passively adapt to
resource performance based on simple prediction models. AppLeS
approach in [2] generates a schedule that not only considers
predicted expected resource performance, but also the variation
in that performance. Authors in [26] proposed a dynamic and
self-adaptive task scheduling scheme based upon application-
level and system-level performance prediction. Authors in [11]
presented a resource planner system that reserves resources for
the subsequent jobs. Most of these methods are passive and adjust
schedules when performance varies. In addition, the impact of task
arrival pattern is barely considered.

However, our learning based approach belongs to the on-
line mode. It incurs low scheduling overhead. Furthermore, it



Download	English	Version:

https://daneshyari.com/en/article/432726

Download	Persian	Version:

https://daneshyari.com/article/432726

Daneshyari.com

https://daneshyari.com/en/article/432726
https://daneshyari.com/article/432726
https://daneshyari.com/

