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A large body of psychophysical and physiological findings has characterized how
information is integrated across multiple senses. This work has focused on two major
issues: how dowe integrate information, and when do we integrate, i.e., how dowe decide if
two signals come from the same source or different sources. Recent studies suggest that
humans and animals use Bayesian strategies to solve both problems. With regard to how to
integrate, computational studies have also started to shed light on the neural basis of this
Bayes-optimal computation, suggesting that, if neuronal variability is Poisson-like, a simple
linear combination of population activity is all that is required for optimality. We review
both sets of developments, which together lay out a path towards a complete neural theory
of multisensory perception.
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Accurate perception frequently relies on combining uncertain
information frommultiple senses. Imagine that you are trying
to locate a predator hiding in the bushes. You hear a faint
sound of the predator's footsteps and at the same time you see
amovement of the leaves. Thatmovement could be caused by

the animal, but also by a gust of wind. If the predator caused
the movement, the visual information will help you localize it
with greater precision.

This example illustrates several general aspects of multi-
sensory perception. Combining information across senses can
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be of critical importance to an animal's survival, making it
plausible that evolutionary pressure has optimized the neural
circuits that serve this purpose.Moreover, those circuits have to
solve two problems simultaneously: figuring out whether two
cueshad the samesource (thepredator) or different sources (the
predator and thewind), and in the former case, how to combine
them. Finally, cues can come with different reliabilities. Visual
informationwill bemore reliable ona sunnyday thanona foggy
day, andyoucan trust auditory informationmore if there is little
background noise. These aspects have guided the theoretical
developments we discuss in this review.

1. Optimal cue integration

When a common source is assumed, a systematic strategy to
quantify cue combination is to introduce a small discrepancy
(also called conflict, disparity, or incongruency) between the
cues. The conflict must be small in order to not violate the
common-source assumption. In such a paradigm, the percept
(estimate of the stimulus) inferred from both cues presented
together will lie somewhere in between the percepts inferred
from each cue individually. The intuition is that higher weight
will be given to the most reliable cue, and that therefore the
multi-cue percept will be closest to the percept obtained from
that cue. Recent psychophysical studies have quantified this
intuition, both across (Alais and Burr, 2004; Battaglia et al.,
2003; Ernst and Banks, 2002; van Beers et al., 1996; Wolpert et
al., 1995) and within sensory modalities (Jacobs, 1999; Knill
and Saunders, 2003). As an example, we consider a laboratory
version of the ventriloquist effect (Alais and Burr, 2004), the
well-known illusion in which a performer makes a puppet
appear to speak (Howard and Templeton, 1966; Welch and
Warren, 1980). This experiment involved spatial localization
along the azimuthal dimension, based on brief visual flashes
and auditory clicks. Importantly, observers were instructed to
regard each pair of multisensory signals as being caused by a
single, well-localized event, for instance a ball hitting the
screen. The investigators found that themean auditory–visual
estimates of location, locations ŝAV, could be expressed as a
linear combination of the auditory and visual sA and sV:

̂sAV ¼ wAsA þwVsV
wA þwV

ð1Þ

In this expression, the weights are given by the inverse
variances of estimates in the respective modalities:
wA ¼ 1

r2A
andwV ¼ 1

r2V
. For example, if in a certain condition the

visual variance is larger than the auditory variance (and
therefore vision is less reliable than audition), vision will be
given less weight than audition in the combination.

Moreover, the inverse variance of the auditory–visual
estimates was found to be

1
r2AV

¼ 1
r2A

þ 1
r2V

ð2Þ

This indicates that using two cues led to higher precision than
using any one cue. The right-hand side of Eq. (2) also gives the
highest possible precision that can be achieved by an unbiased
estimator, given σA and σV. Eqs. (1) and (2) state what is meant

by statistical optimality in this task. Although they summarize
average human behavior over many trials (they give the mean
andvarianceofmaximum-likelihoodestimates), it is commonly
assumed that they reflect regularities that hold on a trial-by-
trial basis. On a single trial, we can think of a sensory cue as
providing a probability distribution over the stimulus. If we
denote the auditory-only distribution by p ( s |A), the visual-only
distribution by p(s|V) and themultisensory distribution by p(s|A,
V), then the optimal multisensory distribution is the product
distribution (Clark and Yuille, 1990; Yuille and Bulthoff, 1996)

p sjA;Vð Þ~p sjAð Þp sjVð Þ; ð3Þ

where the proportionality is such that p(s |A,V) is normalized to
1. We have assumed that the auditory and visual distributions
are independent given the stimulus (this is called conditional
independence). When the distributions in Eq. (3) are Gaussian,
Eqs. (1) and (2) directly follow from Eq. (3). As human behavior
follows Eqs. (1) and (2) in a wide variety of paradigms, (multi-
sensory) cue integration has become a poster child of Bayes-
optimal computation.

Several years ago, a review article stated that these findings
of approximate Bayes-optimal cue integration in humans
raised two central questions (Banks, 2004): “1. how does the
brain know the variances of its sensory estimates to make the
correct weight assignments; 2. how does the brain knowwhen
sensory estimates are coming from the same source and not
different sources, so that combining makes sense?” Since
then, significant progress has been made on both these
questions, in particular in the theoretical domain.

2. Optimal cue integration with neural
populations

When studying how neuronal circuits implement near-optimal
cue integration, an important fact to take into account is that the
responses of cortical neurons are typically very variable (Compte
et al., 2003; Dean, 1981; Holt et al., 1996; Tolhurst et al., 1982).
Presenting the same stimulus repeatedly will give rise to many
different population responses. A first sight, such variability is a
nuisance that could compromise optimality. Recent work,
however, has argued that the presence of variability is not the
problem. If we experience uncertainty about a stimulus, this
stimulus must generate variability in the brain, otherwise there
would be no uncertainty. However, the format of the neural
variability is important in the neural implementation of the
optimal cue integration (Eq. (3)) (Ma et al., 2006). If the statistics of
the variability are known (either to the experimenter or to
downstream neurons), then Bayes' rule can be used to convert
the population pattern of activity on a single trial into a
probability distribution over the stimulus. To be precise, if
the population activity on a single trial is denoted by a vector
r=(r1, r2, …, rN), where ri is the activity of the ith neuron and N
is the number of neurons, then one can obtain the so-called
posterior distribution through

p sjrð Þ~p rjsð Þp sð Þ; ð4Þ

where p(r|s) is the response distribution and p(s) is the prior
distribution (Foldiak, 1993; Sanger, 1996). The posterior
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