

available at www.sciencedirect.com

www.elsevier.com/locate/brainres

BRAIN RESEARCH

Research Report

Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding

Abraham A. Palmer^{a,b,*}, Alan S. Brown^c, Debbra Keegan^d, Lara DeSanti Siska^d, Ezra Susser^e, John Rotrosen^{d,f}, Pamela D. Butler^{f,g,h}

ARTICLEINFO

Article history: Accepted 24 July 2008 Available online 30 July 2008

Keywords:
Prenatal protein deprivation
Dopamine
NMDA
Stereotypy
Locomotor activity
Schizophrenia
Drug abuse

ABSTRACT

Epidemiological evidence indicates that prenatal nutritional deprivation may increase the risk of schizophrenia. The goal of these studies was to use an animal model to examine the effects of prenatal protein deprivation on behaviors and receptor binding with relevance to schizophrenia. We report that prenatally protein deprived (PD) female rats showed an increased stereotypic response to apomorphine and an increased locomotor response to amphetamine in adulthood. These differences were not observed during puberty. No changes in haloperidol-induced catalepsy or MK-801-induced locomotion were seen following PD. In addition, PD female rats showed increased ³H-MK-801 binding in the striatum and hippocampus, but not in the cortex. PD female rats also showed increased ³H-haloperidol binding and decreased dopamine transporter binding in striatum. No statistically significant changes in behavior or receptor binding were found in PD males with the exception of increased ³H-MK-801 binding in cortex. This animal model may be useful to explore the mechanisms by which prenatal nutritional deficiency enhances risk for schizophrenia in humans and may also have implications for developmental processes leading to differential sensitivity to drugs of abuse.

1. Introduction

Considerable evidence suggests that schizophrenia may be a neurodevelopmental disorder in which early abnormities in brain development result in brain malfunction and symptomatology that emerges in early adulthood (Ursula et al., 2006; St Clair et al., 2005; Arnold 1999; Pilowsky et al., 1993; Weinberger 1996). Prenatal nutritional deficiency has been

© 2008 Elsevier B.V. All rights reserved.

^aDepartment of Human Genetics, University of Chicago, Chicago, IL 60637, USA

^bDepartment of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA

^cCollege of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA

^dVA New York Harbor Healthcare System, New York, NY 10010, USA

^eDepartment of Epidemiology, Mailman School of Public Health, Columbia University and New York State Psychiatric Institute, New York, NY 10032, USA

^fNew York University School of Medicine, New York, NY 10016, USA

^gNathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA

^hCity University of New York, New York, NY 10031, USA

^{*} Corresponding author. 920 E 58th St, CLSC-507D, Chicago, IL 60637, USA. Fax: +1 773 834 0505. E-mail address: aap@uchicago.edu (A.A. Palmer).

hypothesized to be a risk factor for schizophrenia since the 1950s (Pasamanick et al., 1956). A series of studies of the Dutch Hunger Winter showed that birth cohorts exposed to famine during early gestation had a two-fold increase in risk of schizophrenia in male and female offspring (Susser et al., 1998 Hoek et al., 1998; Susser et al., 1996; Susser and Lin, 1992). These findings have been replicated in a much larger cohort in China (St. Clair et al., 2005). Further, there was an increase in schizoid personality disorder when male offspring from the Dutch Hunger Winter were studied (Hoek et al., 1996). A recent seroepidemiologic study from a large birth cohort in northern California revealed an association between elevated maternal homocysteine, a marker of folic acid deficiency, and schizophrenia (Brown et al., 2007). Other epidemiologic and laboratory studies of schizophrenia have found evidence of other potential pre- and perinatal etiologies, including prenatal exposure to infections including influenza toxoplasmosis and genital/reproductive infection (Romero et al., 2008; Smith et al., 2007; Brown, 2006) and obstetric complications (Hultman et al., 1999; McNeil et al., 2000a). In addition to epidemiological studies, neuroimaging studies have found that ventriculomegaly and decreased hippocampal volume in schizophrenia are related to obstetric complications (McNeil et al., 2000b) and neuropathology studies have found cytoarchitectonic abnormalities in temporal lobe and prefrontal cortex in postmortem brains of patients with schizophrenia indicative of prenatal damage and possibly altered neuronal migration (Akbarian et al., 1996, 1993).

Previous studies show parallels between long-term effects of prenatal protein deprivation in animals and clinical studies of schizophrenia. For instance, clinical studies as well as animal studies show altered dopamine neurochemisty (Almeida et al., 1996a; Butler et al., 1999; Chen et al., 1995, 1997; Toda and Abi-Dargham, 2007), changes in morphology of the hippocampal formation, including dendritic abnormalities (Cintra et al., 1997; Diaz-Cintra et al., 1991, 1994; Rosoklija et al., 2000), deficits in learning and memory (Tonkiss and Galler 1990; Tonkiss et al., 1990, 1991; Goldman-Rakic 1994; Barch and Smith 2008; Ranganath et al., 2008) and changes in anxiety-like behavior and physiological parameters (Watkins et al., 2008). The few studies to have examined the effects of prenatal protein deprivation on dopamine and glutamate mediated behaviors have shown increased sensitivity to dopamine agonists (Brioni et al., 1986; Shultz et al., 1999) and NMDA antagonists (Tonkiss et al., 1998). However, these studies examined behaviors only in adulthood. In our previous study, we identified deficits in pre-pulse inhibition and accompanying changes in NMDA receptor binding following prenatal protein deprivation in female, but not male rats (Palmer et al., 2004); these changes were present at postnatal day 56 (PDN 56; young adult) but not PND 35 (puberty).

Another example of a developmental model examining long-term effects of a perinatal lesion is the work of Lipska and colleagues (Al-Amin et al., 2000; Lipska et al., 1993, 1995; Lipska and Weinberger 1993; Tseng et al., 2007). These investigators and others found that ventral hippocampal lesions in seven day old rat pups increased dopamine- and glutamate-mediated behaviors (Al-Amin et al., 2000; Lipska et al., 1993; Lipska and Weinberger 1993), produced deficits in learning and memory (Le Pen et al., 2000) and produced alterations in prepulse inhibition of startle (Le Pen et al., 2000; Lipska et al., 1995) that emerged in post- rather than pre-pubertal rats. However, some cognitive impairment and deficits in social behavior occurred pre- as well as post-pubertally (Chambers et al., 1996; Sams-Dodd et al.,

Table 1 – Offspring born, number surviving, and distribution for testing							
Group	# Dams mated	# Gave birth	Mean # offspring	# Litters cross- fostered	Culled to	# Survived	# Tested for behavior
Protein deprived							
Group 1	10	7 (70%)	13.4	6	26M	19M 68%	11M
					22F	13F 59%	7F
							1–3 of each sex from 4 litters
Group 2	10	9 (90%)	13.7	6	24M	19M 79%	10M
					24F	20F 83%	10F
							1–2 of each sex from 6 litters
Pd total	20	16 (80%)	13.6	12	50M	38M 76%	21M
					46F	33F 72%	17F
							1–3 of each sex from 10 litters
Non-deprived							
Group 1	20	13 (65%)	14.2	6	24M	24M 100%	15M
					24F	24F 100%	17F
							M: 3/litter from 5 litters
							F: 2–3/litter from 6 litters
Group 2	20	12 (60%)	15.3	6	24M	24M 100%	10M
					24F	24F 100%	10F
							1–2 of each sex from 6 litters
Nd total	40	25 (63%)	14.7	12	48M	48M 100%	25M
					48F	48F 100%	27F
							M:1–3/litter from 11 litters
							F:1–3/litter from 12 litters

All litters were culled to 4 males and 4 females with the exception of one litter in PD Group 1 which was culled to 6 males and 2 females as it only included 2 females.

Download English Version:

https://daneshyari.com/en/article/4329256

Download Persian Version:

https://daneshyari.com/article/4329256

<u>Daneshyari.com</u>