
Journal of Logical and Algebraic Methods in Programming 85 (2016) 707–736

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Debugging Maude programs via runtime assertion checking 

and trace slicing ✩

María Alpuente a, Demis Ballis b, Francisco Frechina a, Julia Sapiña a,∗
a DSIC-ELP, Universitat Politècnica de València, Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain
b DIMI, University of Udine, Via delle Scienze, 206, 33100, Udine, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 March 2015
Received in revised form 10 March 2016
Accepted 10 March 2016
Available online 16 March 2016

Keywords:
Trace slicing
Runtime checking
Dynamic program slicing
Program diagnosis and debugging
Rewriting logic
Maude

In this paper we propose a dynamic analysis methodology for improving the diagnosis of 
erroneous Maude programs. The key idea is to combine runtime checking and dynamic 
trace slicing for automatically catching errors at runtime while reducing the size and 
complexity of the erroneous traces to be analyzed (i.e., those leading to states failing 
to satisfy some of the assertions). First, we formalize a technique that is aimed at 
automatically detecting deviations of the program behavior (symptoms) with respect to 
two types of user-defined assertions: functional assertions and system assertions. The 
proposed dynamic checking is provably sound in the sense that all errors flagged are 
definitely violations of the specifications. Then, upon eventual assertion violations we 
generate accurate trace slices that help identify the cause of the error. Our methodology is 
based on (i) a logical notation for specifying assertions that are imposed on execution 
runs; (ii) a runtime checking technique that dynamically tests the assertions; and 
(iii) a mechanism based on (equational) least general generalization that automatically 
derives accurate criteria for slicing from falsified assertions. Finally, we report on an 
implementation of the proposed technique in the assertion-based, dynamic analyzer
ABETS and show how the forward and backward tracking of asserted program properties 
leads to a thorough trace analysis algorithm that can be used for program diagnosis and 
debugging.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Program debugging is crucial to reliable software development because the size and complexity of modern soft-
ware systems make it almost impossible to avoid errors in their (requirements and design) specifications. Unfortu-
nately, debugging is generally a burdensome process that takes up a large portion of the software development effort, 
with developers painfully going through volumes of execution traces to locate the actual cause of observable misbe-
haviors. In order to mitigate the costs of debugging, automated tools and techniques are required to help identify 
the root cause of (anticipated) errors. In this paper, we propose a general approach for the debugging of programs 

✩ This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2015-69175-C4-1-R and TIN2013-45732-C4-1-P, 
and by Generalitat Valenciana Ref. PROMETEOII/2015/013. F. Frechina was supported by FPU-ME grant AP2010-5681, and J. Sapiña was supported by FPI-UPV 
grant SP2013-0083 and mobility grant VIIT-3946.

* Corresponding author.
E-mail addresses: alpuente@dsic.upv.es (M. Alpuente), demis.ballis@uniud.it (D. Ballis), ffrechina@dsic.upv.es (F. Frechina), jsapina@dsic.upv.es (J. Sapiña).

http://dx.doi.org/10.1016/j.jlamp.2016.03.001
2352-2208/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2016.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:alpuente@dsic.upv.es
mailto:demis.ballis@uniud.it
mailto:ffrechina@dsic.upv.es
mailto:jsapina@dsic.upv.es
http://dx.doi.org/10.1016/j.jlamp.2016.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2016.03.001&domain=pdf


708 M. Alpuente et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 707–736

that is based on systematically combining runtime assertion checking and automated trace (and program) simplifica-
tion.

Assertion checking is one of the most useful automated techniques available for detecting program faults. In runtime 
assertion checking, assertions are traditionally used to express conditions that should hold at runtime. By finding incon-
sistencies between specified properties and the program code, dynamic assertion checking can prove that the code is 
incorrect. Moreover, since an assertion failure usually reports an error, the user can direct his attention to the location 
at which the logical inconsistency is detected and (hopefully) trace the errors back to their sources more easily. Runtime as-
sertion checking can also be useful in finding problems in the specifications themselves, which is important for keeping the 
specifications accurate and up-to-date. Although not universally used, assertions seem to have widely infiltrated common 
programming practice, primarily for finding bugs in the later stages of development. A brief history of the research ideas 
that have contributed to the assertion capabilities of modern programming languages and development tools can be found 
in [1].

Program slicing [2,3] is another well-established activity in software engineering with increasing recognition in er-
ror diagnosis and program comprehension since it allows one to focus on the code fragment that is relevant to 
the piece of information (known as slicing criterion) that we want to track from a given program point. The ba-
sic idea of program slicing is to isolate a subset of program statements that either (i) contribute to the values of 
a set of variables at a given point or (ii) are influenced by the values of a given set of variables. The first ap-
proach corresponds to forms of backward slicing, whereas the second one corresponds to forward slicing. Work in 
this area has focused on the development of progressively more effective, useful, and powerful slicing techniques, 
which have been transferred to many application areas including program testing, software maintenance, and software 
reuse.

In order to cope with very complex distributed systems, tools and methods that can improve the early specification 
are key to the system development effort. Maude [4] is a high-performance language and system that provides a powerful 
variety of correctness tools and techniques including prototyping, state space exploration, and model checking of temporal 
formulas. Maude programs correspond to specifications in rewriting logic (RWL) [5], which is an extension of membership 
equational logic [6] that, besides supporting equations and allowing the elements of a type or sort to be characterized 
by means of membership axioms, adds rewrite rules that can be non-deterministic in order to represent transitions in a 
concurrent system. Thanks to its reflective design and meta-level capabilities, the Maude system provides powerful and 
highly efficient meta-programming facilities. This has further contributed to its success, giving support to the development 
of sophisticated tools and techniques for the modeling and analysis of Maude specifications, such as LTLR model checking 
[7], abstract certification [8], Web verification [9,10], narrowing-based code-carrying theory [11], etc. (for a survey of the 
related literature, see [12]).

The use of slicing for debugging Maude programs is discussed in [13], and relies on a rich and highly dynamic pa-
rameterized scheme for exploring rewriting logic computations defined in [14,15] that can significantly reduce the size 
and complexity of the runs under examination by automatically slicing both programs and computation traces. How-
ever, Maude does not currently provide general support for asserting properties that are dynamically-checked. Hence, the 
aim of this work is to provide Maude with runtime assertion-checking capabilities by first introducing a simple asser-
tion language that suffices for the purpose of improving error diagnosis and debugging in the context of rewriting logic. 
We follow the approach of modern specification and verification systems such as Spec� or the Java Modeling Language 
(JML) where the specification language is typically an extension of the underlying programming language and specifi-
cations are used as contracts that guarantee certain properties to hold at a number of execution states (e.g., before or 
after a given function call [16]). We believe that this choice of a language is of practical interest because it facilitates the 
job of programmers. Even if Maude is a highly declarative language that supports a programming style where no con-
ceptual difference exists between programs and high-level specifications, there can be good reasons not to use the code 
itself as a contract. Assertions can be seen as a form of lightweight, possibly incomplete or weaker specification em-
bedded in the program text that may help developers identify program properties or behaviors to be preserved when 
modifying code. Independent assertions can also improve the effectiveness of tests, can be used as contracts to check 
the conformance of an implementation to its formal specification, and are key for static verification and automated test 
case generation. During the design process, they can simulate a design, allowing one to explore its properties before com-
mitting to the long development process. The advantages of equipping software with assertions are extensively discussed 
in [17].

In our framework, if an assertion evaluates to false at runtime, an assertion failure results, which typically causes execu-
tion to abort while delivering a huge execution trace. By automatically inferring deft slicing criteria from falsified assertions, 
we derive a self-initiating, enhanced dynamic slicing technique that automatically starts slicing the trace backwards at the 
time the assertion violation occurs, without having to manually determine the slicing criterion in advance. As a by-product 
of the trace slicing process, we also derive a dynamic program slice that preserves the program behavior for the consid-
ered program inputs [2]. In the proposed approach, assertions are external and evaluated at runtime whenever the state 
associated with the assertion is reached during execution. This use of assertions involves checking individual (finite) pro-
gram executions as well as non-deterministic execution trees (up to a finite depth), rather than proving (or disproving) the 
correctness of every program execution.



Download English Version:

https://daneshyari.com/en/article/432964

Download Persian Version:

https://daneshyari.com/article/432964

Daneshyari.com

https://daneshyari.com/en/article/432964
https://daneshyari.com/article/432964
https://daneshyari.com

