

Research Report

Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na⁺ channel regulation

Jun-Ho Lee^{a,1}, Byung-Hwan Lee^{a,1}, Sun-Hye Choi^a, In-Soo Yoon^a, Tae-Joon Shin^a, Mi Kyung Pyo^a, Sang-Mok Lee^a, Hyoung-Chun Kim^b, Seung-Yeol Nah^{a,*}

^aGinsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul Korea, 143-701 ^bNeuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea

ARTICLE INFO

Article history: Accepted 4 January 2008 Available online 12 February 2008

Keywords: Panax ginseng Ginsenoside Rg₃ Batrachotoxin binding sites Na_v channels

ABSTRACT

Recently, we showed that the 20(S)-ginsenoside Rg₃ (Rg₃), an active ingredient of *Panax ginseng*, inhibits rat brain Na_v1.2 channel peak currents (I_{Na}). Batrachotoxin (BTX) is a steroidal alkaloid neurotoxin and activates Na_v channels through interacting with transmembrane domain-I-segment 6 (IS6) of channels. Recent report shows that ginsenoside inhibits BTX binding in rat brain membrane fractions. However, it needs to be confirmed whether biochemical mechanism is relevant physiologically and which residues of the BTX binding sites are important for ginsenoside regulations. Here, we demonstrate that mutations of BTX binding sites such as N418K and L421K of rat brain Na_v1.2 and L437K of mouse skeletal muscle Na_v1.4 channel reduce or abolish Rg₃ inhibition of I_{Na} and attenuate Rg₃-mediated depolarizing shift of the activation voltage and use-dependent inhibition. These results indicate that BTX binding sites play an important role in modifying Rg₃-mediated Na⁺ channel properties.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Na⁺ channels are transmembrane proteins that consist of a pore-forming α subunit and auxiliary β 1, β 2 and β 3 subunits (Goldin, 1995). The α subunit is composed of four homologous domains (I–IV), each composed of six α -helical transmembrane segments (S1–S6), and is responsible for voltage-dependent increases in Na⁺-selective permeability. The inward Na⁺ current (I_{Na}) initiates axonal and somatic action potentials in nerve and muscle fibers, and may also be involved in axonal intraneuronal or interneuronal information transfer (Stuart and Sackmann, 1994). Na⁺ channels are one of the targets of cardiac- and neuroprotective treatments against pathologic conditions including arrhythmia and brain ischemia. Site-directed mutagenesis has helped to reveal drug/toxin binding sites in the Na⁺

* Corresponding author. Fax: +82 2 450 3037.

channel α subunit (Wang and Wang, 1998). For example, batrachotoxin, which is a skin neurotoxin from the South American frog Phyllobates terribilis, activates brain Na_v1.2 and skeletal muscle Na_v1.4 channels. Further studies using sitedirected mutagenesis demonstrated that I433, N434 and L437 residues of Na_v1.4 channel and their homologous residues such as I417, N418 and L421 of brain Na_v1.2 channel in domain-I segment 6 (IS6) play important roles as BTX interaction sites (Wang and Wang, 1998).

Ginseng, the root of *Panax ginseng* C.A. Meyer, is well known in herbal medicine as a tonic and restorative agent. The main molecular ingredients responsible for its effects are the ginsenosides, amphiphilic molecules comprising a hydrophobic aglycone backbone linked to monomeric, dimeric or tetrameric hydrophilic carbohydrate side chains (Fig. 1). Ginsenosides have

E-mail address: synah@konkuk.ac.kr (S.-Y. Nah).

¹ These two authors contributed equally to this work.

^{0006-8993/\$ –} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.brainres.2008.01.078

Glc-Glc-

neuroprotective actions in vitro and in vivo (Kim et al., 2005), but their molecular bases remain elusive. The 20(S) but not the 20(R) form of ginsenoside Rg₃ inhibits tonic I_{Na} expressed in Xenopus oocytes in the resting and open states, and induces a depolarizing shift in the activation voltage and use-dependent inhibition (Jeong et al., 2004; Lee et al., 2005). Ginsenoside Rh₂ inhibits [³H] BTX-B binding in rat brain membrane fractions (Duan et al., 2006), suggesting that the ginsenoside-induced rat brain Nav1.2 channel effects may involve the BTX binding sites. However, it is not clear whether the interference by ginsenoside with [³H]BTX-B binding in rat brain membrane fractions is relevant to ginsenoside-induced Na⁺ channel regulations, and which residues of the BTX binding sites are important for ginsenoside-induced Na⁺ channel regulations. The aim of the present study was to investigate the relationships between ginsenoside-mediated interference with Na⁺ channel function and the BTX binding sites using the Xenopus oocyte gene expression system and sitedirected mutagenesis. For this, we used rat brain Nav1.2 and mouse skeletal muscle Nav1.4 channels and examined whether Rg3 effects on both Na⁺ channel isoforms are influenced with the same manner after mutations of BTX binding sites. We present evidence that BTX binding sites such as N418 and L421 of Na_v1.2 and L437 of Nav1.4 in IS6 play important roles in modifying Rg3mediated Na⁺ channel properties.

2. Results

2.1. Point mutations of residues in the BTX binding sites of $Na_V 1.2$ and $Na_V 1.4$ channels shift the Rg_3 concentration response curve rightward and abolish Rg_3 inhibition

We showed in a previous report that Rg_3 inhibits $Na_V 1.2$ channel currents (I_{Na}) in a stereospecific manner (Jeong et al., 2004). Recently, Duan et al. (2006) reported that ginsenosides inhibit [³H]BTX-B binding in rat brain membrane fractions,

suggesting the existence of specific binding sites for Rg_3 and raising the possibility that ginsenoside affects $Na_V 1.2$ channel activity via the BTX binding sites. We therefore tested whether substitutions of amino acid residues in the BTX binding sites alter Rg_3 -mediated tonic inhibition of the channels.

Using the two-electrode voltage-clamp technique we recorded Na_v1.2 and Na_v1.4 channel currents from *Xenopus* oocytes, in which cRNA of Na_v1.2 α or Na_v1.4 α was co-injected with cRNA of β 1 subunit. To elicit the currents we applied voltage steps (200-ms duration) to –10 mV at 5-s intervals from a holding potential of –100 mV. The currents evoked were transient inward Na⁺ currents (I_{Na}) that decayed rapidly (Fig. 2) (Lee et al., 2005). As previously reported, Rg₃ (100 μ M) resulted in an inhibition of I_{Na} in wild-type channels averaging 65.1±3.5 % for Na_v1.2 and 63.4±4.1 % for Na_v1.4. The Rg₃ effect was concentration-dependent (Figs. 2A and B), and the IC₅₀ value and Hill coefficient for two Na⁺ channels are given in Table 1.

Next, to test whether mutations of the BTX binding sites affect Rg₃ inhibition of the Na_V1.2 and Na_V1.4 channels, we constructed both channels with mutated BTX binding sites (I417K, N418K and L421K for Na $_V$ 1.2; I433K, N434K and L437K for Nav1.4 channel) (Wang and Wang, 1998). Fig. 2A shows representative traces of peak I_{Na} in the absence or presence of Rg₃ in oocytes expressing wild-type and L421K of Na_V1.2 and wild-type and L437K of Na_v1.4 channel. Fig. 2B reproduces representative concentration-response curves for peak I_{Na} inhibition of the wild-type and mutant channels by Rg₃. For Na_V1.2, L421K abolished Rg₃ inhibition, I417K had no effect on inhibition and N418K caused an approximately eleven-fold increase in IC_{50} value from 29.4±3.2 to 329.9±37.6 $\mu M.$ For Na_v1.4, I433K and N434K had no effect on Rg₃ inhibition but L437K caused an approximately two-fold increase in IC_{50} value from 58.5 ± 6.3 to $121.6 \pm 20.6 \,\mu\text{M}$ (Fig. 2B and Table 1).

We assessed current–voltage relationships in the absence or presence of Rg₃ with voltage steps from –50 to +50 mV from a holding potential of –100 mV every 5 s. As shown in Fig. 2C, Rg₃ treatment caused a voltage-dependent reduction in peak $I_{\rm Na}$ in wild-type channels with more pronounced inhibition at the lower voltages. However, Rg₃ had no significant effect on the current–voltage relationship in oocytes expressing L421K for Na_v1.2 and L437K for Na_v1.4, indicating that BTX binding sites are important for Rg₃ effects on Na_v1.2 and Na_v1.4 channel regulation.

2.2. Point mutations of the BTX binding sites abolish the Rg_3 effect on the steady-state activation of $Na_v 1.2$ and $Na_v 1.4$

In our previous report we also showed that Rg_3 induces a depolarizing shift in the steady-state activation voltage but not in the inactivation voltage, in addition to inhibiting peak I_{Na} . However, the mutation of K859 to K859Q in voltage sensor segment domain II abolished the Rg_3 -induced depolarizing shift in steady-state activation without affecting Rg_3 -induced peak I_{Na} inhibition (Lee et al., 2005). This suggested that K859 residue is another residue that Rg_3 interacts with. We next examined whether mutations of the BTX binding sites alter the effect of Rg_3 on the voltage-dependence of Na^+ channel steady-state activation. The data obtained are summarized in Table 2. There was a significant depolarizing shift of the half-maximal activation voltage in wild-type isoforms (Fig. 3A and

Download English Version:

https://daneshyari.com/en/article/4329954

Download Persian Version:

https://daneshyari.com/article/4329954

Daneshyari.com