
J. Parallel Distrib. Comput. 87 (2016) 26–42

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Snap-stabilizing committee coordination
Borzoo Bonakdarpour a, Stéphane Devismes b,∗, Franck Petit c
a Department of Computing and Software, McMaster University, Canada
b VERIMAG UMR 5104, Université Joseph Fourier, Grenoble, France
c LIP6 UMR 7606, UPMC Sorbonne Universités, Paris, France

h i g h l i g h t s

• We give snap-stabilizing algorithms for the committee coordination problem (CC).
• Our algorithms achieve other properties, e.g., fairness and maximal concurrency.
• We show that there is no CC algorithm satisfying fairness and maximal concurrency.
• We provide 2 snap-stabilizing solutions implementing these properties separately.

a r t i c l e i n f o

Article history:
Received 17 June 2013
Received in revised form
2 September 2015
Accepted 18 September 2015
Available online 30 September 2015

Keywords:
Distributed algorithms
Snap-stabilization
Self-stabilization
Committee coordination

a b s t r a c t

In the committee coordination problem, a committee consists of a set of professors and committee meet-
ings are synchronized, so that each professor participates in at most one committee meeting at a time. In
this paper, we propose two snap-stabilizing distributed algorithms for the committee coordination. Snap-
stabilization is a versatile property which requires a distributed algorithm to efficiently tolerate transient
faults. Indeed, after a finite number of such faults, a snap-stabilizing algorithm immediately operates cor-
rectly, without any external intervention.We design snap-stabilizing committee coordination algorithms
enriched with some desirable properties related to concurrency, (weak) fairness, and a stronger synchro-
nization mechanism called 2-Phase Discussion. In our setting, all processes are identical and each process
has a unique identifier. The existing work in the literature has shown that (1) in general, fairness cannot
be achieved in committee coordination, and (2) it becomes feasible if each professor waits for meetings
infinitely often. Nevertheless, we show that even under this latter assumption, it is impossible to imple-
ment a fair solution that allowsmaximal concurrency. Hence, we propose two orthogonal snap-stabilizing
algorithms, each satisfying 2-phase discussion, and eithermaximal concurrency or fairness. The algorithm
that implements fairness requires that every professor waits for meetings infinitely often. Moreover, for
this algorithm, we introduce and evaluate a new efficiency criterion called the degree of fair concurrency.
This criterion shows that even if it does not satisfy maximal concurrency, our snap-stabilizing fair algo-
rithm still allows a high level of concurrency.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Distributed systems are often constructed based on an asyn-
chrony assumption. This assumption is quite realistic, given the
principle that distributed systems must be conveniently expand-

∗ Corresponding author.
E-mail addresses: borzoo@mcmaster.ca (B. Bonakdarpour),

stephane.devismes@imag.fr (S. Devismes), franck.petit@lip6.fr (F. Petit).
URLs: http://www.cas.mcmaster.ca/∼borzoo/ (B. Bonakdarpour),

http://www-verimag.imag.fr/∼devismes/ (S. Devismes),
http://pagesperso-systeme.lip6.fr/Franck.Petit/ (F. Petit).

able in terms of size and geographical scale. It is, nonetheless, in-
evitable that processes running across a distributed system often
need to synchronize for various reasons, such as exclusive access
to a shared resource, termination, agreement, rendezvous, etc. Im-
plementing synchronization in an asynchronous distributed sys-
tem has always been a challenge, because of obvious complexity
and significant cost; if synchronization is handled in a centralized
fashion using traditional shared-memory constructs such as bar-
riers, it may turn into a major bottleneck, and, if it is handled in
a fully distributed manner, it may introduce significant communi-
cation overhead, unfair behavior, and be vulnerable to numerous
types of faults.

http://dx.doi.org/10.1016/j.jpdc.2015.09.004
0743-7315/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2015.09.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.09.004&domain=pdf
mailto:borzoo@mcmaster.ca
mailto:stephane.devismes@imag.fr
mailto:franck.petit@lip6.fr
http://www.cas.mcmaster.ca/~borzoo/
http://www.cas.mcmaster.ca/~borzoo/
http://www.cas.mcmaster.ca/~borzoo/
http://www.cas.mcmaster.ca/~borzoo/
http://www.cas.mcmaster.ca/~borzoo/
http://www.cas.mcmaster.ca/~borzoo/
http://www-verimag.imag.fr/~devismes/
http://www-verimag.imag.fr/~devismes/
http://www-verimag.imag.fr/~devismes/
http://www-verimag.imag.fr/~devismes/
http://www-verimag.imag.fr/~devismes/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://pagesperso-systeme.lip6.fr/Franck.Petit/
http://dx.doi.org/10.1016/j.jpdc.2015.09.004


B. Bonakdarpour et al. / J. Parallel Distrib. Comput. 87 (2016) 26–42 27

The classic committee coordination problem [10] characterizes a
general type of synchronization called n-ary rendezvous as follows:

‘‘Professors in a certain university have organized themselves
into committees. Each committee has an unchanging membership
roster of one or more professors. From time to time a professor
may decide to attend a committee meeting; he starts waiting and
remains waiting until a meeting of a committee of which he is
a member is started. All meetings terminate in finite time. The
restrictions on convening a meeting are as follows: (1) meeting of
a committee may be started only if all members of that committee
are waiting, and (2) no two committees can meet simultaneously,
if they have a commonmember. The problem is to ensure that (3) if
all members of a committee are waiting, then a meeting involving
some member of this committee is convened’’.

In the context of a distributed system, professors and committees
can be mapped onto processes and synchronization events (e.g., ren-
dezvous) respectively. Moreover, the three properties identified in
this definition are known as (1) Synchronization, (2) Exclusion, and
(3) Progress, respectively.

Most of the existing algorithms that solve the committee
coordination problem [2,3,10,23,24,26] overlook properties that
are vital in practice. Examples include satisfying fairness or
reaching maximum concurrency among convened committees
and/or professors in a meeting. Moreover, to our knowledge, none
of the existing algorithms is resilient to the occurrence of faults.
These features are significantly important when a committee
coordination algorithm is implemented to ensure distributed
mutual exclusion in code generation frameworks, such as process
algebras, e.g., CSP, Ada, and BIP [6].

With this motivation, in this paper, we propose snap-stabilizing
[7,8] distributed algorithms for the committee coordination prob-
lem, where all processes are identical and each process has a
unique identifier. Snap-stabilization is a versatile property which
requires a distributed algorithm to efficiently tolerate transient
faults. Indeed, after a finite number of such faults (e.g., memory
corruptions, message losses, etc.), a snap-stabilizing algorithm
immediately operates correctly, without any external (e.g., hu-
man) intervention. A snap-stabilizing algorithm is also a self-
stabilizing [16] algorithm that stabilizes in 0 steps. In other words,
our algorithms are optimal in terms of stabilization time, i.e., every
meeting convened after the last fault satisfies every requirement of
the committee coordination. By contrast, an algorithm that would
be only self (but not snap) stabilizing only recovers a correct behav-
ior in finite time after the occurrence of the last fault. Nevertheless,
to the best of our knowledge, the committee coordination problem
was never addressed in the area of self-stabilization. Therefore, the
algorithms proposed in this paper are also the first self-stabilizing
committee coordination protocols.

Our snap-stabilizing committee coordination algorithms are
enriched with other desirable properties. These properties include
Professor Fairness, Maximal Concurrency, and 2-Phase Discussion.
The former property means that every professor which requests to
participate in a committee meeting that he is a member of, even-
tually does. Roughly speaking, the second of the aforementioned
properties consists in allowing as many committees as possible to
meet simultaneously. The latter (2-Phase Discussion) requires pro-
fessors to collaborate for aminimumamount of timebefore leaving
a meeting.

We first consider Maximal Concurrency and Professor Fair-
ness. As in [23], to circumvent the impossibility of satisfying fair-
ness [24], each time we consider professor fairness in the sequel
of the paper, we assume that every professor waits for a meeting
infinitely often. Under this assumption, we show that Maximal
Concurrency and Professor Fairness are two mutually exclusive
properties, i.e., it is impossible to design a committee coordination

algorithm (even non-stabilizing) that satisfies both features simul-
taneously.

Consequently, we focus on the aforementioned contradictory
properties independently by providing the two snap-stabilizing
algorithms. The former maximizes concurrency at the cost of not
ensuring professor fairness. On the contrary, the second algorithm
maintains professor fairness, but maximal concurrency cannot be
guaranteed. Both algorithms are based on the straightforward idea
that coordination of the various meetings must be driven by a
priority mechanism that helps each professor to know whether
or not he can participate in a meeting. Such a mechanism can be
implemented using a token circulating among the professors. To
ensure fairness, when a professor holds a token, he has the higher
priority to convene a meeting. He then retains the token until
he joined the meeting. In that case, some neighbors of the token
holder can be prevented from participating in other meetings so
that the tokenholder eventually does. This results in decreasing the
level of concurrency. In order to guarantee maximal concurrency
(but at the risk of being unfair), a waiting professor must release
the token if he is not yet able to convene ameeting to give a chance
to other committees in which all members are already waiting.

Thus, in the first algorithm, we show the implementability
of committee coordination with Maximal Concurrency even if
professors are not required to wait for meetings infinitely often. To
the best of our knowledge this is the first committee coordination
algorithm that implements maximal concurrency. Moreover, the
algorithm is snap-stabilizing and satisfies 2-Phase Discussion.

We also propose a snap-stabilizing algorithm that satisfies
Fairness on professors (respectively, committees) and respects
2-Phase Discussion. As mentioned earlier, this algorithm assumes
that every professor waits for a meeting infinitely often. Following
our impossibility result, the algorithm does not satisfy Maximal
Concurrency. However, we show that it still allows a high level of
concurrency. We analyze this level of concurrency according to a
newly defined criterion called the degree of fair concurrency. We
also study the waiting time of our algorithm.
Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we present the preliminary concepts. Section 3 is dedicated
to definitions of Maximal Concurrency and Fairness in commit-
tee coordination. Then, in Section 4, we propose our first snap-
stabilizing algorithm that satisfies both Maximal Concurrency and
2-phase Discussion. In Section 5, we present our snap-stabilizing
algorithm that satisfies Fairness and 2-phase Discussion. Our anal-
ysis on level of concurrency and waiting time is also presented
in this section. Related work is discussed in Section 6. Finally, we
present concluding remarks and discuss future work in Section 7.

2. Background

2.1. Distributed systems as hypergraphs

Considering the committee coordination problem in the con-
text of distributed systems, professors and committees aremapped
onto processes and synchronization events (e.g., rendezvous) respec-
tively.We assume that each process has a unique identifier and the
set of all identifiers is a total order.We simply denote the identifier
of a process p by p.

For the sake of simplicity, we assume that each committee has
at least two members.1 Hence, we model a distributed system as a
simple self-loopless hypergraphH = (V , E)where V is a finite set
of vertices representing processes and E is a finite set of hyperedges

1 Adapting our results to take singleton committees into account is straightfor-
ward.



Download	English	Version:

https://daneshyari.com/en/article/432997

Download	Persian	Version:

https://daneshyari.com/article/432997

Daneshyari.com

https://daneshyari.com/en/article/432997
https://daneshyari.com/article/432997
https://daneshyari.com/

