
J. Parallel Distrib. Comput. 83 (2015) 13–29

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A fair starvation-free prioritized mutual exclusion algorithm for
distributed systems
Jonathan Lejeune ∗, Luciana Arantes, Julien Sopena, Pierre Sens
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inria, LIP6, 4, place Jussieu 75252 Paris Cedex 05, France

h i g h l i g h t s

• Our algorithm is based on two mechanisms aiming at postponing priority increment and reducing messages overhead.
• Priority increment postponing reduces the amount of priority violations without introducing starvation.
• Taking into account request locality allows to reduce the message overhead due to the priority postponement.
• Priority increment increases significantly the waiting time of the lowest priorities.
• The location of processes on the logical tree topology has an impact over performance.

a r t i c l e i n f o

Article history:
Received 20 December 2013
Received in revised form
15 November 2014
Accepted 2 April 2015
Available online 12 April 2015

Keywords:
Distributed system
Mutual exclusion
Priority
Algorithm

a b s t r a c t

Several distributed mutual exclusion algorithms define the order in which requests are satisfied based
on the priorities assigned to requests. These algorithms are very useful for real-time applications ones or
those where priority is associated to a quality of service requirement. However, priority based strategies
may result in starvation problems where high priority requests forever prevent low priority ones to
be satisfied. To overcome this problem, many priority-based algorithms propose to gradually increase
the priority of pending requests. The drawback of such an approach is that it can violate priority-based
order of requests leading to priority inversion. Therefore, aiming at minimizing the number of priority
violations without introducing starvation, we have added some heuristics in Kanrar–Chaki priority-based
token-oriented algorithm in order to slow down the frequency with which priority of pending requests is
increased. Performance evaluation results confirm the effectiveness of our approach when compared to
both the original Kanrar–Chaki and Chang’s priority-based algorithms.

© 2015 Published by Elsevier Inc.

1. Introduction

Many distributed and parallel applications require that their
processes obtain exclusive access to one or more shared resources.
Mutual exclusion is then one of the fundamental building bricks
of distributed systems. It ensures that at most one process can
access the shared resources at any time (safety property) and
that all critical section requests are eventually satisfied (liveness
property). The set of instructions of processes’ code that access a
shared resource is denoted a critical section (CS).

Several distributedmutual exclusion algorithms exist in the lit-
erature (e.g. [6,14,9,16,13,12]). They can be divided into two fami-
lies [17]: permission-based (e.g. Lamport [6], Ricart–Agrawala [14],

∗ Corresponding author.
E-mail addresses: jonathan.lejeune@lip6.fr (J. Lejeune), luciana.arantes@lip6.fr

(L. Arantes), julien.sopena@lip6.fr (J. Sopena), pierre.sens@lip6.fr (P. Sens).

Maekawa [9]) and token-based (Suzuki–Kasami[16], Raymond[13],
Naimi–Tréhel [12]). The algorithms of the first family are based
on the principle that a process only enters a critical section af-
ter having received permission from all the other processes (or a
sub-set of them [14,9]). In the second group of algorithms, a
system-wide unique token is shared among all processes, and its
possession gives a process the exclusive right to execute a critical
section.

In the majority of distributed mutual exclusion algorithms, CS
requests are satisfied in First-Come-First-Served (FCFS) time-based
event order such as the logical time of the requests or the physi-
cal time when the token holder receives a request. However, this
approach is not suitable for all kinds of applications such as, for
instance, applications where some tasks have priority over the
others, real-time environments [2,1], or applications where prior-
ity is associated to a quality of service requirement [7]. To over-
come these constraints, some authors (e.g., [5,2,10,11,1,7]) have
proposed some mutual exclusion algorithms where every request

http://dx.doi.org/10.1016/j.jpdc.2015.04.002
0743-7315/© 2015 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jpdc.2015.04.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.04.002&domain=pdf
mailto:jonathan.lejeune@lip6.fr
mailto:luciana.arantes@lip6.fr
mailto:julien.sopena@lip6.fr
mailto:pierre.sens@lip6.fr
http://dx.doi.org/10.1016/j.jpdc.2015.04.002


14 J. Lejeune et al. / J. Parallel Distrib. Comput. 83 (2015) 13–29

is associated to a priority. The satisfaction of pending requests re-
spects, whenever possible, the priority order. However, priority or-
der induces starvation problems, i.e., the infinite delay for granting
access to the CS to a process, which then violate liveness property.
Starvation happens when higher priority requests forever prevent
lower priority ones from executing the CS. Hence, in order to avoid
such a problem, low priorities of pending requests are dynamically
increased in these algorithms, eventually reaching the highest pri-
ority. The drawback of this strategy is that it can violate priority-
based order of requests, i.e., it can lead to priority inversion where
a request with an original low priority will be satisfied before an-
other one with higher priority.

We propose in this paper some priority-based distributed mu-
tual exclusion algorithms that reduce request priority violations
without introducing starvation. We particularly focus our work on
token-based mutual exclusion algorithms since the latter usually
has an average lower message cost and thus presents better scala-
bility.

Token-based algorithms exploit different solutions for the for-
warding of critical section requests of processes and token trans-
mission. Each solution is usually expressed by a logical topology
that defines the paths followed by critical section request mes-
sages which might be completely different from the physical net-
work topology. Our algorithm is an extension of Kanrar–Chaki [5]
algorithm where distributed processes are organized in a static
logical tree. By applying some heuristics, our algorithm postpones
the increasing of priority of pending requests and, therefore, the
number of priority violations is reduced when compared to both
the original Kanrar–Chaki algorithm and Chang’s priority-based al-
gorithm [1], as confirmed by the results of our thorough perfor-
mance evaluation experiments. Furthermore, we also show that
the heuristics have a lowmessage overhead compared to the origi-
nal algorithmwhile keeping the samewaiting time.Moreover, they
tolerate quitewell peaks of request load. A first version of our algo-
rithmhas beenpresented in [7] but oriented to Service Level Agree-
ment constraints in the context of cloud computing.

The rest of the paper is organized as follows. Section 2 dis-
cusses some existing priority-based mutual exclusion distributed
algorithms and gives a description of the Kanrar–Chaki algorithm.
Our priority request distributedmutual exclusion solutions are de-
scribed in Section 3. Performance evaluation results are presented
in Section 4. A discussion about a trade-off between the response
time and the priority violation is presented in Section 5. Finally,
Section 6 concludes the paper.

2. Related work

In this section we outline the main priority-based mutual ex-
clusion algorithms. Furthermore, since our priority-based mutual
exclusion (mutex) algorithms are based on the Kanrar–Chaki [5]
algorithm, the latter is described in more details.

Prioritized distributed mutex algorithms are usually an exten-
sion of some non-prioritized algorithms. Goscinski algorithm [2] is
based on the token-based Suzuki–Kasami algorithmandhas ames-
sage complexity of O(N). Pending requests are stored in a global
queue and are piggybacked on token messages. Starvation is pos-
sible since the algorithm can lose requests while the token is in
transition since in this case, it is not held by any process.

Mueller algorithm [10] is inspired in Naimi–Tréhel token-
passing algorithm which exploits a dynamic tree as a logical
structure for forwarding requests. Each process keeps a local
queue and records the time of requests locally. These queues form
a virtual global queue ordered by priority within each priority
level. Its implementation is quite complex and the dynamic tree
tends to become a simple queue because, unlike the Naimi–Tréhel
algorithm, the root process is not the last requester but the token

holder. Therefore, in this case the algorithm presents a message
complexity of O(N2 ).

Housni–Tréhel algorithm [3] adopts a hierarchical approach
where processes are grouped by priority. Each group is identified
by one router process. Within each group, processes are organized
in a static logical tree like Raymond’s algorithm [13] and routers
apply the Ricart–Agrawala algorithm [14]. Starvation is possible for
processes that issued low priority processes if many high priority
requests are pending. Moreover, a process can only send requests
with the same priority (that of its group).

Several algorithms, such as Kanrar–Chaki [5] and Chang [1]
algorithms, propose to extend Raymond’s [13] token-based
algorithm in order to assign priorities to requests. Since our
heuristics are applied to Kanrar–Chaki algorithm,we describe both
Kanrar–Chaki and Raymond algorithms.

Raymond’s algorithm [13] is a token-based mutex algorithm
where processes are organized in a static logical tree: only the
direction of links between two processes can change during the
algorithm’s execution. Processes thus form a directed path tree to
the root. Excepting the root, every process has a father process. The
root process is the owner of the token and it is the unique process
which has the right to enter the critical section. When a process
needs the token, it sends a request message to its father. This
request will be forwarded till it reaches the root or a process which
also has a pending request. Every process saves its own request and
those received from its children in a local FIFO queue. When the
root process releases the token, it grants the token message to the
first process of its own local queue and this process becomes its
father. Then, if its queue is not empty, it sends a request to its new
father, to eventually get the token back. When a process receives
the token, it removes the first request from its local queue. If this
request was issued by the process itself, it executes the critical
section; otherwise it forwards the token to the process that issued
it, and the latter becomes its father. Moreover, if the local queue
of the process is not empty, it sends to its new father a request on
behalf of the first request of its queue.

An example of Raymond algorithm execution with 3 processes
is shown in Fig. 1 where arrows represent father links. Initially,
process B, the root process, is in critical section, and both processes
A and C have issued a request (Fig. 1(a)). When B releases the CS,
it sends the token to A, updates its father link and sends a new
request to A (Fig. 1(b)) on behalf of C request. In its turn, when A
releases the token, it sends it to B that forwards it to C . Finally, the
token is received by C; Fig. 1(c) shows the final state when both
requests were satisfied.

Kanrar–Chaki algorithm [5] extended Raymond algorithm in
order to introduce a priority level for every process CS request.
The greater the level (an integer value), the higher the priority of
the request. Hence, pending requests of a process’s local queue
is ordered by decreasing priority levels. Similarly to Raymond’s
algorithm, a process thatwishes the token sends a requestmessage
to its father. However, upon reception, the father process includes
the request in its local queue according to the request priority level
and only forwards it if the request priority level is greater than the
one of the previous first element of the processes’s local queue. In
order to avoid starvation, the priority level of pending requests of
a process’s local queue is increased: when the process receives a
request with priority p, every pending request of its local queue
whose priority level is smaller than p is increased by 1.

Similarly to the Kanrar–Chaki algorithm, Chang has modified
Raymond’s algorithm in [1] aiming both at (1) applying dynamic
priorities to requests and (2) reducing communication traffic. For
the priority, he added a mechanism denoted aging strategy: if pro-
cess p releases the CS or if it is a non requesting process that holds
the token and receives a request, p increases the priority of every
request in its local queue; furthermore, upon reception of the to-
ken, which includes the number of CS executions, p increases the



Download English Version:

https://daneshyari.com/en/article/433008

Download Persian Version:

https://daneshyari.com/article/433008

Daneshyari.com

https://daneshyari.com/en/article/433008
https://daneshyari.com/article/433008
https://daneshyari.com

