
J. Parallel Distrib. Comput. 74 (2014) 2899–2917

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Versatile, scalable, and accurate simulation of distributed applications
and platforms
Henri Casanova a, Arnaud Giersch b, Arnaud Legrand c, Martin Quinson d,
Frédéric Suter e,f,∗
a Department of Information and Computer Sciences, University of Hawai‘i at Manoa, USA
b FEMTO-ST, University of Franche-Comté, Belfort, France
c LIG, CNRS, Grenoble University, France
d LORIA, Université de Lorraine, France
e IN2P3 Computing Center, CNRS/IN2P3, Lyon-Villeurbanne, France
f LIP, INRIA, ENS Lyon, Lyon, France

h i g h l i g h t s

• We provide a presentation of the improvements done in SimGrid in the last 10 years.
• We rebut popular wisdom that specialization allows for ‘‘better’’ simulation.
• We claim that versatility leads to better accuracy and better scalability.
• We back up this claim with multiple use cases and (in)validation studies.

a r t i c l e i n f o

Article history:
Received 6 September 2013
Received in revised form
10 June 2014
Accepted 19 June 2014
Available online 10 July 2014

Keywords:
Simulation
Validation
Scalability
Versatility
SimGrid

a b s t r a c t

The study of parallel and distributed applications and platforms,whether in the cluster, grid, peer-to-peer,
volunteer, or cloud computing domain, often mandates empirical evaluation of proposed algorithmic
and system solutions via simulation. Unlike direct experimentation via an application deployment on
a real-world testbed, simulation enables fully repeatable and configurable experiments for arbitrary
hypothetical scenarios. Two key concerns are accuracy (so that simulation results are scientifically sound)
and scalability (so that simulation experiments can be fast and memory-efficient). While the scalability
of a simulator is easily measured, the accuracy of many state-of-the-art simulators is largely unknown
because they have not been sufficiently validated. In this workwe describe recent accuracy and scalability
advances made in the context of the SimGrid simulation framework. A design goal of SimGrid is that it
should be versatile, i.e., applicable across all aforementioned domains. We present quantitative results
that show that SimGrid compares favorably with state-of-the-art domain-specific simulators in terms
of scalability, accuracy, or the trade-off between the two. An important implication is that, contrary to
popular wisdom, striving for versatility in a simulator is not an impediment but instead is conducive to
improving both accuracy and scalability.

© 2014 Elsevier Inc. All rights reserved.

The use of parallel and distributed computing platforms is per-
vasive in a wide range of contexts and for a wide range of appli-
cations. High Performance Computing (HPC) has been a consumer
of and driver for these platforms. In particular, commodity clusters
built from off-the-shelf computers interconnected with switches

∗ Corresponding author at: IN2P3 Computing Center, CNRS/IN2P3, Lyon-
Villeurbanne, France.

E-mail address: frederic.suter@cc.in2p3.fr (F. Suter).

have been used for applications in virtually all fields of science and
engineering, and exascale systems with millions of cores are al-
ready envisioned. Platforms that aggregate multiple clusters over
wide-area networks, or grids, have received a lot of attention over
the last decade with both specific software infrastructures and
application deployments. Distributed applications and platforms
have also come to prominence in the peer-to-peer and volunteer
computing domains (e.g., for content sharing, scientific computing,
data storage and retrieval, media streaming), enabled by the
impressive capabilities of personal computers and high-speed

http://dx.doi.org/10.1016/j.jpdc.2014.06.008
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.06.008&domain=pdf
mailto:frederic.suter@cc.in2p3.fr
http://dx.doi.org/10.1016/j.jpdc.2014.06.008


2900 H. Casanova et al. / J. Parallel Distrib. Comput. 74 (2014) 2899–2917

personal Internet connections. Finally, cloud computing relies on
the use of large-scale distributed platforms that host virtualized re-
sources leased to consumers of compute cycles and storage space.

While large-scale production platforms have been deployed
and used successfully in all these domains, many open ques-
tions remain. Relevant challenges include resource management,
resource discovery and monitoring, application scheduling, data
management, decentralized algorithms, electrical power manage-
ment, resource economics, fault-tolerance, scalability, and per-
formance. Regardless of the specific context and of the research
question at hand, studying and understanding the behavior of ap-
plications on distributed platforms is difficult. The goal is to as-
sess the quality of competing algorithmic and system designs with
respect to precise objective metrics. Theoretical analysis is typ-
ically tractable only when using stringent and ultimately un-
realistic assumptions. As a result, relevant research is mostly
empirical and proceeds as follows. An experiment consists in exe-
cuting a software application on a target hardware platform. We use
the term ‘‘application’’ in a broad sensehere, encompassing a paral-
lel scientific simulation, a peer-to-peer file sharing system, a cloud
computing brokering system, etc. The application execution on the
platformgenerates a time-stamped trace of events, fromwhich rel-
evant metrics can be computed (e.g., execution time, throughput,
power consumption). Finally, research questions are answered by
comparing these metrics across multiple experiments.

One can distinguish three classes of experiments. In in vivo ex-
periments an actual implementation of the application is executed
on a real-world platform. Unfortunately, real-world production
platforms may not be available for the purpose of experiments.
Even if a testbed platform is available, experiments can only be
conducted for (subsets of) the platform configuration at hand,
limiting the range of experimental scenarios. Finally, conducting
reproducible in vivo experiments often proves difficult due to
changing workload and resource conditions. An alternative that
obviates these concerns is in vitro experiments, i.e., using emula-
tion (e.g., virtual machines, network emulation). A problem with
both in vivo and in vitro experiments is that experiments may
be prohibitively time consuming. This problem is exacerbated not
only by the need to study long-running applications but also by the
fact that large numbers of experiments are typically needed to ob-
tain results with reasonable statistical significance. Furthermore,
when studying large-scale applications and platforms, commensu-
rate amounts of hardware resources are required. Even if the nec-
essary resources are available, power consumption considerations
must be taken into account: using large-scale platformsmerely for
performance evaluation experiments may be an unacceptable ex-
pense and a waste of natural resources. The third approach con-
sists in running (an abstraction of) the application in silico, i.e.,
using simulation. This approach is typically less labor-intensive,
and often less costly in terms of hardware resources, when com-
pared to in vivo or in vitro experiments. Consequently, it should be
no surprise that many published results in the field are obtained in
silico.

Two key concerns for simulation are accuracy (the ability to run
in silico experiments with no or little result bias when compared
to their in vivo counterparts) and scalability (the ability to run large
and/or fast in silico experiments). A simulator relies on one ormore
simulation models to describe the interaction between the sim-
ulated application and the simulated platform. There is a widely
acknowledged trade-off between model accuracy and model scal-
ability (e.g., an analytical model based on equations may be less
accurate than a complex event-driven procedure but its evalua-
tion would also be less memory- and CPU-intensive). Simulation
has been used in some areas of Computer Science for decades, e.g.,
for microprocessor and network protocol design, but its use in the
field of parallel and distributed computing is less developed.While

the scalability of a simulator can be easily quantified, evaluating
its accuracy is painstaking and time consuming. As a result, pub-
lished validation results often focus on a few scenarios, whichmay
be relevant to a particular scope, instead of engaging in a system-
atic and critical evaluation methodology. Consequently, countless
published research results are obtained with simulation methods
whose accuracy is more or less unknown.

An important observation is that simulators used by parallel
and distributed computing researchers are domain-specific (e.g.,
peer-to-peer simulators, grid simulators, HPC simulators). In some
cases, domain-specificity is justified. For instance, wireless net-
works are markedly different from wired networks and in this
work, for instance, we only consider wired networks. But, in gen-
eral, many simulators are developed by researchers for their own
research projects and these researchers are domain experts, not
simulation experts. The popular wisdom seems to be that devel-
oping a versatile simulator that applies across domains is not a
worthwhile endeavor because specialization allows for ‘‘better’’
simulation, i.e., simulations that achieve a desirable trade-off be-
tween accuracy and scalability. In this work, we rebut popular wis-
dom and claim that, when developing a simulation framework,
aiming for versatility is the way to achieve better accuracy and bet-
ter scalability. Our main contribution is that we confirm this claim
by synthesizing the experience gained during the 10-year devel-
opment of the SimGrid discrete-event simulation framework, pre-
senting results relating to both simulation design and simulation
implementation. Some of these results have been previously pub-
lished in conference proceedings, as referenced hereafter, while
others are novel contributions.

The rest of this article is organized as follows. Section 1
presents related work. Section 2 discusses the current design and
design goals of SimGrid. Sections 3 and 4 explain how striving
for versatility has led to advances in accuracy and scalability,
respectively. While these sections include several short case
studies, Section 5 presents a full-fledged case study in the HPC
domain. Finally, Section 6 concludes the paper with a brief
summary of findings and with perspectives on future work.

1. Related work

In this section we discuss popular simulators that have been
used in the last decade and whose goal is to enable ‘‘fast’’ simu-
lation of grid, cloud, peer-to-peer, volunteer, or HPC applications
and platforms, meaning that the simulation time (i.e., the runtime
of the in silico experiment) should be orders of magnitude faster
than the simulated time (i.e., the simulated runtime of the appli-
cation). Most of these simulators share the same design with three
components: (i) simulationmodels; (ii) platform specification; and
(iii) application specification. Simulation models are used to im-
plement the evolution of simulated application activities (com-
putations, data transfers) that use simulated resources (compute
devices, network elements, storage devices) throughout simulated
time. More specifically, given all the application activities that use
a set of resources, resource models are used to compute the com-
pletion date of the activity that completes the earliest and the
progress made by all other activities by that date. Platform speci-
fication mechanisms allow users to instantiate platform scenarios
without having to modify the simulation models or the simula-
tion’s implementation. Each resource must be described using an
instantiated simulationmodel, and resources can be connected to-
gether (e.g., a particular set of network links and routers is used for
end-to-end communication between two compute resources). Ap-
plication specification refers to the set of mechanisms and abstrac-
tions for users to describe the nature and sequence of activities that
must be simulated. Existing simulators provide many options for



Download English Version:

https://daneshyari.com/en/article/433020

Download Persian Version:

https://daneshyari.com/article/433020

Daneshyari.com

https://daneshyari.com/en/article/433020
https://daneshyari.com/article/433020
https://daneshyari.com

