
J. Parallel Distrib. Comput. 74 (2014) 2934–2940

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimal metadata replications and request balancing strategy on
cloud data centers
Zeng Zeng, Bharadwaj Veeravalli ∗
Computer Networks and Distributed Systems Laboratory, Department of Electrical and Computer Engineering, The National University of Singapore,
10 Kent Ridge Crescent, Singapore 117576, Singapore

h i g h l i g h t s

• In this paper we address an important problem pertaining to Metadata Server Clusters.
• We propose strategies to handle metadata replication and a load balancing strategy to minimize mean response time.
• We present rigorous theoretical analysis of the strategies proposed and present a practical algorithm.
• We compare our findings with most commonly used strategies that use hashing functions and show a significant gain.
• We demonstrate a trade-off relationship between makespan and the monetary cost.

a r t i c l e i n f o

Article history:
Received 11 September 2013
Received in revised form
28 February 2014
Accepted 23 June 2014
Available online 5 July 2014

Keywords:
Mean response time
Request balancing
Distributed system
Metadata server
Queueing theory

a b s t r a c t

In large-scale cloud data centers, metadata accesses will very likely become a severe performance
bottleneck as metadata-based transactions account for over 50% of all file system operations. Clusters
of Metadata Servers (MDS) that providemetadata searching service can improve the system performance
significantly. For a data stored in cloud data centers, there may be several MDS storing the metadata
replicas. Therefore, when a data request arrives, it has many potential metadata paths, one of which shall
be chosen to obtain the best performance. In this paper, we attempt to determine the number of MDS
that each data object in the system shall have and the request rates that each MDS shall serve, in order
to achieve the minimum mean response time (MRT) of all the metadata requests. The target optimal
constrained function has been formulated and a novel metadata request balancing algorithm based on
request arrival rates has been proposed, which can find near-optimal solutions by a theoretical proof.
In our experiments, we compare our algorithm with widely used hashing functions that have 0, 1, 2, 3
replicas, respectively. We validate our findings via simulations with respect to several influencing factors
and prove that our proposed strategy is scalable, flexible and efficient for the real-life applications. Some
interesting perspectives of the work are also presented at the end of this paper.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The emergence of cloud computing poses a grand challenge for
modern data centers. More andmore large commercial web-based
services, such as Google, Amazon, and Alibaba, serve millions of
people every day, which are extremely important services but also
very expensive to host. A web index, e.g., some search functions
within a single cloud, contains billions of documents that are par-
titioned andmanaged in thousands of search servers. Furthermore,
data-intensive scientific applications,whichmainly aimat answer-
ing some of the most fundamental questions facing human beings,
are becoming increasingly prevalent in a wide range of scientific

∗ Corresponding author.
E-mail addresses: elebv@nus.edu.sg, elezengz@nus.edu.sg (B. Veeravalli).

and engineering research domains, such as high-energy particle
physics and astronomy [10], and climate change modeling [15]. In
such applications, large amounts of data sets (files) are generated,
accessed, and analyzed by scientists and researchers worldwide.
One distinct feature of cloud data centers is that they manage very
large amount of data sets, in the order of terabytes and petabytes.
For example, the Large Hadron Collider (LHC) at the European Or-
ganization for Nuclear Research (CERN) is the largest scientific in-
strument on the planet. Since it began operation in August, 2008,
it was expected to produce roughly 15 petabytes of data annually,
which are accessed and analyzed by thousands of scientists and re-
searchers around the world [13].

Cloud data centers have service-oriented architectures, in
which services are broadly divided into three categories:
Infrastructure-as-a-Service (IaaS) that includes equipments such

http://dx.doi.org/10.1016/j.jpdc.2014.06.010
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.06.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.06.010&domain=pdf
mailto:elebv@nus.edu.sg
mailto:elezengz@nus.edu.sg
http://dx.doi.org/10.1016/j.jpdc.2014.06.010


Z. Zeng, B. Veeravalli / J. Parallel Distrib. Comput. 74 (2014) 2934–2940 2935

as hardware, storage, servers, and networking components are
made accessible over the Internet; Platform-as-a-Service (PaaS)
that includes hardware and software platforms such as visualized
storage servers, operating systems, and the like; and Software-
as-a-Service (SaaS) that includes software applications and other
hosted services such as network disks [6].

In cloud data centers, any arrival request is serviced within a
suitable metadata server (MDS), in order to retrieve the metadata
of the target data, and then the request will be forwarded to the
raw data server (RDS) for the target data retrieval [5,17]. An MDS
may contain different computing, memory, harddisk, bandwidth
resources, and others. In order to provide the best QoS of web-
based services, storage service providers normally have multiple
replicas within data centers and hope the Mean Response Time
(MRT) of all the requests can be reduced by load balancing among
these replicas existing on different MDS. Normally, large-scale file
systems, such as Ext3 [5] and Luster [17], adopt hashing functions
to balance the requests for the same data objects among MDS.
However, a cloud data center can have a large number of MDS,
typically of the order of tens or hundreds andhashing functions can
just balance few of the MDS at a time [6]. From the system aspect,
although the set of MDS that have a replica of the metadata is well
balanced, the entire system is still un-balanced.

In this paper, we attempt to provide a mathematical formu-
lation that captures and demonstrates the ability to evaluate the
potential data flow paths within cloud data centers. Based on this
formulation, we devise distributed strategies to achieve minimum
MRT of all requests arriving on MDS within cloud data centers.
We attempt to formulate the load balancing problem of MDS as
a non-linear constrained optimization problem. As with the prin-
ciple of load balancing, requests are allowed tomigrate from heav-
ily loaded MDS to lightly loaded MDS for minimizing MRT of the
requests. Based on the request arrival rates, our strategy can deter-
mine the number of replicas among MDS and their locations. Fur-
thermore, our strategy can balance the metadata requests among
theMDSwith ametadata replica, in order to achieve theminimum
MRT of all the requests. We validate our findings via simulations
compared with hashing functions of 0, 1, 2, 3 replicas and prove
that our proposed strategy is scalable, flexible, and efficient.

The rest of the paper is organized as follows. Section 2 discusses
on relevant research work. Section 3 describes the system model,
notation and problem definition. In Section 4, we propose our
strategy to place and balance the requests among the MDS within
cloud data centers. Section 5 shows the results of our simulation
experiments. We conclude our work in Section 6.

2. Related work

The software architectures of cloud data centers are based on
the file systems, which can be categorized in general in local file
systems and distributed (or cluster) file systems. Classical local
file systems, such as NTFS [20] and ext3 [5], which are wildly
used in a single machine, consider the storage devices as locally
attached to a given host. Storage devices are not shared; therefore,
no device-sharing semantics is required in the file system design.
The actual goal in designing a local file system is to increase
performance by reducing the number of disk accesses through
caching and bundling file system operations as much as possible.
However, local file systems lack the scalability and cannotmeet the
requirements in High Performance Computing (HPC) platforms,
e.g., cloud data centers, that need the adoption of the distributed
memory paradigm by employing multiple machines for peak
floating point performances. Comparedwith the local file systems,
cluster file systems, such as Luster [17], Google File System [6],
and AFS [7], provide transparent parallel access to the storage
devices keeping standard file system semantics. Users only see

one logical device through the standard I/O primitives. Cluster file
systems emphasize on concepts such as sharing and connectivity
as well as client side caching. Unlike local file systems, cluster
file systems distribute their resources across the whole storage
subsystem, thus allowing simultaneous access from multiple
machines. Furthermore, the distributed file system shall address
two important issues: provide a large bandwidth for data access
from multiple concurrent tasks and can scale to many millions or
billions of files among thousands of raw data servers (RDS).

The Google File System (GFS) [6] was proposed to meet the
addressed issues and was cloned in open source projects like
HadoopDistributed File System (HDFS) [3] and Kosmos File System
(KFS) [12] that are used by companies like Yahoo, Facebook,
Amazon, and Baidu. The GFS architecture comprises of a single
GFS master server that stores the metadata of the file system
and multiple slaves known as chunkservers that store the data.
Files are divided into chunks (usually 64 MB in size) and the
GFS master manages the placement and data-layout among the
various chunkservers. The GFS master also stores the metadata
like filenames, size, directory structure and information about the
location, and placement of data in memory. One of the direct
implications of this design is that the size of metadata is limited
by the memory available at the GFS master. This architecture is
chosen for its simplicity and works well for hundreds of terabytes
with fewmillions of files [14]. With storage requirements growing
to petabytes, there is a need for distributing the metadata storage
to more than one server. In Ceph, a dynamic distributed metadata
cluster provides extremely efficient metadata management and
seamlessly adapts to a wide range of general purpose and
scientific computing file system workloads. Ceph has excellent
I/O performance and scalable metadata management, supporting
more than 250,000 metadata operations per second [18].

Applications communicate with a GFS master only while open-
ing a file to find out the location of the data and then directly
communicate with the chunkservers (RDS) to reduce the load on
the single master. A typical GFS master can handle a few thou-
sand operations per second [14]. However, when massively par-
allel applications like a MapReduce [4] job with many thousand
mappers need to open a number of files, the GFS master becomes
overloaded and turns to the system bottleneck. As cloud data cen-
ters grow to accommodate many thousands of machines in one lo-
cation, distributing the metadata operations among multiple MDS
would be necessary to increase the throughput in a single data cen-
ter. Handling metadata operations efficiently is an important as-
pect of the file system as they constitute up to half of file system
workloads [16]. In order to meet the scalability and functionality
requirements for exponentially growing data sets and increasingly
complex metadata queries in large-scale, exabyte-level file sys-
temswith billions of files, Yu Hua et al. proposed SmartStore in [8].
SmartStore can exploit semantics of files’ metadata to judiciously
aggregate correlated files into semantic-aware groups by using in-
formation retrieval tools. The basic idea of SmartStore is to limit
the search scope of a complex metadata query to a single or a min-
imal number of semantically correlated groups and hence, avoid or
alleviate brute-force search in the entire system. While I/O band-
width available for a distributed file system can be increased by
adding more data storage servers, scaling metadata management
involves dealing with many issues, such as data consistency across
replicated servers, metadata migration and replications, and load
balancing [17].

When a request of file is generated by application users, from
the viewof file systems, there is a loopeddata path across three lay-
ers: file system portal, metadata layer, and data storage layer. It is
very interesting to see that the development of file systems follows
a bottom-up style, from the data storage layer to other up layers, in
order to provide exponentially increasing data storage capacities.



Download English Version:

https://daneshyari.com/en/article/433022

Download Persian Version:

https://daneshyari.com/article/433022

Daneshyari.com

https://daneshyari.com/en/article/433022
https://daneshyari.com/article/433022
https://daneshyari.com

