
J. Parallel Distrib. Comput. 74 (2014) 3026–3036

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Flexible rerouting schemes for reconfiguration of
multiprocessor arrays
Guiyuan Jiang a, Jigang Wu b,∗, Jizhou Sun a, Yiyi Gao a

a School of Computer Science and Technology, Tianjin University, Tianjin, 300072, China
b School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin, 300387, China

h i g h l i g h t s

• We develop a flexible rerouting scheme to improve the efficiency of utilizing fault-free PEs.
• We propose a heuristic to construct maximum logical arrays in linear time.
• We develop an efficient algorithm to reduce the interconnection redundancy of the logical array.
• We propose a tight lower bound on the total interconnection length.

a r t i c l e i n f o

Article history:
Received 20 June 2013
Received in revised form
7 June 2014
Accepted 23 June 2014
Available online 30 June 2014

Keywords:
Processor array
Reconfiguration
Fault tolerance
Rerouting scheme
Interconnection length
Algorithm

a b s t r a c t

In a multiprocessor array, some processing elements (PEs) fail to function normally due to hardware
defects or soft faults caused by overheating, overload or occupancy by other running applications.
Fault-tolerant reconfiguration reorganizes fault-free PEs to a new regular topology by changing the
interconnection among PEs. This paper investigates the problemof constructing as large as possible logical
array with short interconnects from a physical array with faults. A flexible rerouting scheme is developed
to improve the efficiency of utilizing fault-free PEs. Under the scheme, two efficient reconfiguration
algorithms are proposed. The first algorithm is able to generate themaximum logical array (MLA) in linear
time. The second algorithm reduces the interconnect length of the MLA, and it is capable of producing
nearly optimal logical arrays in comparison to the lower bound of the interconnect length, that is also
proposed in this paper. Experimental results validate the efficiency of the flexible rerouting schemes and
the proposed algorithms. For 128 × 128 host arrays with 30% unavailable PEs, the proposed approaches
improve existing algorithm up to 44% in terms of logical array size, while reducing the interconnection
redundancy by 49.6%. In addition, the proposed algorithms are more scalable than existing approaches.
On host arrays with 50% unavailable PEs, our algorithms can produce logical arrays with harvest over 56%
while existing approaches fail to construct a feasible logical array.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The quest for high-performance and low-power consumption
leads to the development of multi-core architectures in which a
large number of parallel processing elements (PEs) are integrated
on a single chip in a tightly coupled fashion. However, faults of-
ten occur with the increased integration density due to overheat-
ing during massive parallel computing. The faulty PEs destroy the
regular structure of the communication networks, and thus they

∗ Corresponding author.
E-mail addresses: jguiyuan@gmail.com (G. Jiang), asjgwu@gmail.com (J. Wu),

jzsun@tju.edu.cn (J. Sun), yygao17@gmail.com (Y. Gao).

reduce the processing capabilities of themultiprocessor array. This
leads us to reconstruct the network topology using reconfiguration
techniques, which open up new possibilities to improve the com-
puting capabilities and the reliability of multiprocessor systems.

In application-aware topology reconfiguration, a multiproces-
sor array is customized to a topology that matches the traffic pat-
tern of the application to reduce power consumption and message
latency. There are two important application-specific reconfigura-
tion methods, one is optimization of network topology [24,23,2],
and the other ismapping of cores to network [13,22]. However, this
becomes a big burden for programmers, because an optimized net-
work topologyworkingwell for one applicationmay notworkwell
for another application. Differently, the fault-tolerant reconfigura-
tion tries to reorganize fault-free PEs of a faulty array into a logical

http://dx.doi.org/10.1016/j.jpdc.2014.06.009
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.06.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.06.009&domain=pdf
mailto:jguiyuan@gmail.com
mailto:asjgwu@gmail.com
mailto:jzsun@tju.edu.cn
mailto:yygao17@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2014.06.009


G. Jiang et al. / J. Parallel Distrib. Comput. 74 (2014) 3026–3036 3027

array with regular topology (standard structured), which ensures
well-controlled parameters for communication.

Two types of fault-tolerant architectures are mostly inves-
tigated for mesh connected processor arrays, i.e., router-based
architecture and switch-based architecture. Router-based archi-
tecture consists of network nodes connected by links in mesh
topology [28,6,18,36,5]. Each network node contains a conven-
tional router, which provides routing and arbitration capabilities
for packet messages. Header information of packet messages is re-
quired in forwarding data from the source to the destination. In
case of faults, the router based network only needs to map the ir-
regular network topology to a regular logical topology. Although
the router-based architecture is easier to reconfigure in the algo-
rithm aspect, it requires a complex router circuit, which increases
the hardware cost, power consumption and circuit faults. In
addition, the routing procedure is usually time-consuming. In
switch-based fault-tolerant architecture, switches are laid be-
tween neighboring PEs, and the switches are also interconnected
with one another [23,1,27]. In this type of architecture, once the
connection is set up, signal messages can be transferred through
the connection without any header information. Furthermore, the
time delay is negligible since no routing or arbitration is needed.
Hence, switch-based architecture is superior in terms of hardware
cost, time delay, power consumption and probability of circuit
faults. But the challenge in switch based architecture lies in the de-
sign of efficient reconfiguration algorithms. In this paper, we focus
on developing efficient reconfiguration algorithms for the switch-
based fault tolerant architecture.

Published solutions on the switch-based processor arrays can
be classified into two categories, i.e., the redundancy approach and
the degradation approach. The former intends to obtain a target
logical array with a guaranteed size by replacing faulty PEs us-
ing spare ones [17,30,4,12,35], while the latter tries to provide a
target array as large as possible. In the degradation approach, a
fault-free logical subarray of m′ × n′ is formed from a faulty ar-
ray of m × n (m′ ≤ m, n′ ≤ n), such that the original applica-
tion can still work on the m′ × n′ subarray. Many approaches for
reconfiguring processor arrays have been proposed under three
different rerouting constraints [16], namely (1) row and column by-
pass, (2) row bypass and column rerouting, and (3) row and column
rerouting. Most problems that arise under the above-mentioned
constraints are NP-complete. Many methods that use different
tracks [9,21,29], switches [34] and rerouting schemes [12,33,8,14,
15] have been proposed to increase the utilization rate of fault-
free PEs on the fault-tolerant processor arrays. However, these ap-
proaches intend to find as large as possible logical arrays without
considering the network length. The work in [20,19] investigated
a special case, i.e., reconfiguration on selected rows (which will be
discussed in detail later), and obtained the maximum logical array
(MLA). Then, the MLA is further optimized by a dynamic program-
ming approach to reduce the communication cost, capacitance and
dynamic power dissipation [31].

These mentioned approaches limit the rerouting distance to 1
such that two fault-free PEs with column/row distance exceeding
1 cannot connect as logical neighbors. The rational is that the
network link capacity of d units is required if the rerouting distance
is set to d, thus d must be kept small in order to reduce hardware
cost. We will discuss this in detail in Section 2.2. However, the
limitation on rerouting distance leads to a large number of unused
fault-free PEs in constructing logical arrays. On the other hand, in
reducing the interconnection length (inter-length for short) of the
logical array, the order of revising each logical column significantly
affects the inter-length of the resultant logical array. But in [31],
columns are revised from right to left, resulting in a considerable
amount of interconnection redundancy.

In this paper, our first goal is to improve the efficiency of
using fault-free PEs to construct logical arrays. For this purpose,

we develop a flexible rerouting scheme which does not limit the
rerouting distance. We utilize the algorithm to guarantee that
the resultant logical array can be implemented on the original
physical array. We propose an efficient heuristic approach for
constructing MLAs and prove that it is optimal in finding the
maximum logical array size. Our second goal is to minimize the
inter-length of the proposed MLA. For this purpose, we propose
an efficient algorithm to reduce the inter-length of each column of
the MLA. Unlike [31], the logical columns are revised in a recursive
order. The main contributions of this paper are as follows. (1) A
flexible rerouting scheme is developed to improve the utilization
of fault-free PEs. (2) An efficient heuristic is proposed to produce
the MLA in linear time under the flexible rerouting scheme. (3)
A dynamic programming based algorithm is developed to reduce
the inter-length, producing nearly optimal MLA in terms of the
total inter-length. (4) A lower bound on the total inter-length of
the MLA is proposed to evaluate the performance of the proposed
algorithms.

The rest of this paper is organized as follows. In Section 2,
we introduce the reconfiguration architecture, reconfiguration
schemes and a brief description of previous work. In Section 3,
we propose an efficient heuristic, which is capable of producing
MLA under flexible rerouting schemes in linear time. In Section 4,
we investigate the problem of constructing MLA with short inter-
length by modeling it as a shortest path problem. We present the
proposed lower bound on the inter-length of the MLA in Section 5.
Experimental results and analysis are shown and discussed in
Section 6. Finally, we conclude our work in Section 7.

2. Preliminaries

2.1. Fault-tolerant architecture

LetH denote the physical (host) arraywhere some of the PEs are
defective. Assume the fault density of the physical array is ρ, then
there are N = (1 − ρ) · m · n fault-free PEs in an m × n physical
array. An m′ × n′ subarray comprising only fault-free PEs can be
constructed by changing the connections among PEs. This subarray
is called a target array or logical array, denoted as T . The rows and
columns in physical/logical array are called physical/logical rows
and columns, respectively. In this paper, ei,j(e′i,j) indicates the PE
located at (i, j) of the host (logical) array, where i is its row index
and j is its column index. row(u)(col(u)) denotes the physical row
(column) index of PE u. u = v indicates that u is identical to v.

Fig. 1(a) shows the structure of a fault-tolerant processor array
of 4 × 4 with 3 faulty PEs. The fault-tolerant reconfiguration
is achieved by inserting several 4-port switches in the network,
allowing the network to dynamically change the connections
among PEs. Each square box in the figure represents a PE, whereas
each circle represents a 4-port switch. There are 4 states for each
switch, and the link capacity of each link is 1 unit. In Fig. 1(b),
a logical array of 4 × 3 is constructed by changing the states
of switches. Throughout the paper, the gray shaded boxes in the
figures represent faulty PEs while unshaded ones represent fault-
free PEs.

2.2. Reconfiguration schemes

Two types of reconfiguration schemes, i.e., bypass scheme and
rerouting scheme, have been proposed to guide reconfiguration
algorithms for constructing logical arrays. As shown in Fig. 2(a),
if PE ei,j is faulty, PE ei,j−1 can directly communicate with PE ei,j+1
and data will bypass ei,j through an internal bypass link without
being processed. This scheme is called row bypass scheme. Under
this scheme, an entire column of PEs can be bypassed if the column
contains too many faulty PEs. Note that no external switch is



Download English Version:

https://daneshyari.com/en/article/433028

Download Persian Version:

https://daneshyari.com/article/433028

Daneshyari.com

https://daneshyari.com/en/article/433028
https://daneshyari.com/article/433028
https://daneshyari.com

